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Abstract. This study investigates the performance of hybrid Maximum Power Point Tracking (MPPT) algorithms for 

photovoltaic systems using neural networks (NN), genetic algorithms (GA), and particle swarm optimization (PSO). 

Three hybrid models—NN-GA, PSO-GA, and NN-PSO—were evaluated based on response time, maximum power, and 

robustness to noise. Results revealed distinct trade-offs among the models. The NN-GA model exhibited the shortest 

response time of 0.0036 s/prediction, but its accuracy significantly degraded with increasing noise levels. The PSO-GA 

model demonstrated the highest maximum power output of 100.24 W and superior robustness to noise, with a mean 

absolute error (MAE) of 0.2062 at 30% noise. The NN-PSO model provided balanced performance, achieving a maximum 

power of 45.90 W and demonstrating the lowest MAE of 0.1537 at 20% noise. These findings highlight the transformative 

potential of hybrid MPPT methods in enhancing both the adaptability and performance of solar energy systems across 

diverse and challenging operational conditions. 

Keywords: Maximum Power Point Tracking, neural networks, genetic algorithms, particle swarm optimization, hy-

brid models. 
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Introduction 

Solar energy plays an important role in the development of renewable energy sources due to its 

environmental friendliness, availability, and cost-effectiveness. However, the low conversion effi-

ciency of photovoltaic (PV) systems, ranging from 9 to 17%, requires the use of power optimization 

technologies to improve their efficiency. Maximum Power Point Tracking technology provides an 

opportunity to maximize the output power of solar panels by adapting them to changing climatic 

conditions [1, 2, 3]. 

Traditional methods such as perturbation and observation (P&O) and incremental conductivity 

(INC) algorithms are widely used due to their simplicity and low implementation cost. However, 

these methods have limitations such as steady-state oscillations and efficiency degradation under rap-

idly changing solar radiation [4, 5]. In recent years, much attention has been paid to the implementa-

tion of intelligent methods, including neural networks, logic controllers, and particle optimization 

algorithms. These approaches demonstrate improved tracking performance, robustness to data noise, 

and adaptation to complex operating conditions [6, 3]. 

Several studies have been conducted to compare MPPT methods to identify their strengths and 

weaknesses. For example, Sarvi and Azadian's study classifies algorithms into traditional, smart, and 

hybrid, noting that hybrid approaches have an advantage in non-uniform shading conditions [3]. 

Eltawil and Zhao's work provides a detailed discussion of the advantages and disadvantages of smart 

methods over traditional ones, highlighting their potential to improve the efficiency of solar systems 

[2]. 

This study aims to investigate and evaluate state-of-the-art MPPT algorithms applied to photo-

voltaic systems, focusing on comparing their performance characteristics such as response time, ro-

bustness to data noise, and overall energy extraction efficiency, thereby identifying promising areas 

for further development. 

 

Materials and Methods 

Maximum Power Point Tracking technology is designed to maximize the energy extracted from 

solar panels despite changes in environmental conditions (e.g. sunlight intensity, temperature, shad-

ing). Each solar panel has a Maximum Power Point (MPP) — the combination of voltage and current 
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at which the greatest power is produced. However, due to the nonlinear characteristics of solar cells 

and changing conditions, this point changes throughout the day. 

MPPT algorithms measure the panel voltage (U) and current (I) to calculate the output power 

𝑃 = 𝑈 ⋅ 𝐼 P=U⋅I. MPPT analyzes the current power and compares it to previous measurements. If the 

power increases, the load settings change in the same direction. If it decreases, the direction is ad-

justed. MPPT controllers continuously adjust the panel voltage and current to achieve the optimal 

power point, even as weather conditions change. The implementation of MPPT provides maximum 

energy efficiency of solar systems, increasing the output power by 10-30% compared to systems 

without MPPT [7]. 

This study aims to evaluate the capabilities of artificial intelligence (AI) to improve the effi-

ciency of MPPT. It includes several stages: first, the classical Perturb and Observe (P&O) algorithm 

is simulated, which is the basis for performance analysis. The simulator generates random voltage 

and current values in the range of 0-60, calculates the power and records the results. Performance is 

assessed by average, maximum and minimum power. The indicators of such AI models as neural 

networks, decision trees, genetic algorithms, particle swarm optimization (PSO) are compared. 

The following criteria are selected for comparing the models: 

• Response Speed: The time it takes to adapt to changing conditions. 

• Power Extraction Efficiency: The maximum power that a model can achieve. 

• Robustness to Data Noise: The ability to maintain performance in the presence of variations 

or errors in the input data. 

Neural Network. A neural network is a composite mathematical model that transforms input 

data into output through a system of interconnected nodes (neurons) organized into layers [8]. For 

MPPT problems, neural networks are trained on data including voltage, current, and power to predict 

optimal voltage and current values. The general formula for a single neuron is: The output 𝑦𝑖 of a 

neuron in layer 𝑙 is defined as: 

 

 𝑦𝑖
(𝑙)

= 𝑓(∑ 𝑤𝑖𝑗
(𝑙)
𝑥𝑗
(𝑙−1)

+ 𝑏𝑖
(𝑙)𝑛

𝑗=1 ), (1) 

 

where 𝑥𝑗
(𝑙−1)

 is the output of the 𝑗-th neuron from the previous layer, 𝑤𝑖𝑗
(𝑙)

 is the weight of the con-

nection between neurons, 𝑏𝑖
𝑙 is the bias of the current neuron, 𝑓(∙) is the activation function (in our 

case, it is ReLU), n is the number of inputs for the current neuron. The network optimizes the param-

eters (weights 𝑤𝑖𝑗 and biases 𝑏𝑖) based on the loss function 𝐿, which measures the discrepancy be-

tween the predicted output �̃� and the true value 𝑦. An example of a loss function: 

 

 𝐿 =
1

𝑁
∑ (𝑦𝑖 − �̃�𝑖)

2𝑁
𝑖=1 , (2) 

 

where 𝑁 is the number of training examples. 

Gradient descent is used to minimize the loss function: 
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(𝑙), (4) 

 
where 𝜂 is the learning rate. For the voltage and current prediction task, a linear activation function 

is used in the output layer to ensure continuous output. The network is tuned based on synthetic data 

representing the voltage, current, and power of solar panels under different conditions. 

Genetic algorithms. These are heuristic optimization methods that imitate the processes of nat-

ural selection described by the theory of evolution. These algorithms are suitable for finding optimal 
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or approximately optimal solutions to complex problems. The genetic algorithm is based on the use 

of a population of possible solutions to the problem, represented as chromosomes that encode the 

solution parameters [9]. The quality of each solution is assessed using the fitness function, which 

determines the efficiency of the corresponding solution. During the operation of the algorithm, selec-

tion is carried out, in which chromosomes with the highest values of the fitness function are chosen 

to participate in reproduction. The creation of a new generation includes a combination of parent 

chromosomes using the crossover operation, as well as the use of mutation, which introduces random 

changes to maintain the genetic diversity of the population. After this, the new generation replaces 

the previous one. The algorithm begins with initialization, during which an initial population of ran-

dom solutions is created. At each iteration step, the fitness function is assessed, parents are selected, 

and crossover and mutation are performed to generate a new generation. The process continues until 

a specified number of iterations is achieved or the target optimization criterion is met. 

A chromosome is a string of parameters 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑥𝑖 is the parameter value. 

For MPPT, these are voltage and current. The fitness function evaluates the quality of each solution. 

In MPPT, the fitness function is defined as: 𝑓(𝑥) = 𝑃(𝑥), where 𝑃 is the output power of the solar 

panel, depending on the parameters 𝑥. Then selection occurs – the probability of choosing the 𝑖-th 

chromosome 𝑝𝑖 is proportional to its fitness: 

 

𝑝𝑖 =
𝑓(𝑥𝑖)

∑ 𝑓(𝑥𝑗)
𝑁
𝑗=1

, 

 

where 𝑁 is the population size. The crossover generates offspring 𝑜1, 𝑜2 by combining parent chro-

mosomes 𝑝1, 𝑝2. An example of a single-point crossover: 

 

 𝑜1 = (𝑝1[1: 𝑘], 𝑝2[𝑘 + 1: 𝑛]), (5) 
 𝑜2 = (𝑝2[1: 𝑘], 𝑝1[𝑘 + 1: 𝑛]), (6) 

where 𝑘 is the split point. 

Mutation introduces a random change in chromosome 𝑥: 𝑥𝑖
′ = 𝑥𝑖 + 𝛿, where 𝛿 is a random 

value from a given range. A new population is formed from the offspring, or combined with a part of 

the old population to preserve elite solutions. The algorithm terminates if the specified number of 

iterations is reached or the fitness function value stops improving. 

 

Particle Swarm Optimization (PSO).   

It is an optimization method inspired by the social behavior of flocks of birds or schools of fish. 

The algorithm uses particles that move through a solution space to find the optimal value of an ob-

jective function [10]. Each particle represents a potential solution to the problem and moves through 

the solution space based on its past experience and social interactions. To operate, the PSO algorithm 

first defines an initial population of particles, each with a position 𝑥𝑖 and a velocity 𝑣𝑖 chosen at 

random. Each particle is evaluated using an objective function 𝑓(𝑥) to determine its "quality". The 

velocity and position are updated according to the formula: 𝑣𝑖 = 𝜔𝑣𝑖 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖) + 𝑐2𝑟2(𝑔 −
𝑥𝑖), where 𝜔 is the inertia coefficient controlling the influence of the previous velocity, 𝑐1, 𝑐2 are the 

learning coefficients for the personal and social components, 𝑟1, 𝑟2 are random numbers in the range 

[0,1] providing stochasticity, 𝑝𝑖 is the best position of the particle, 𝑔 is the best position among all 

particles in the population. The position of the particles is updated according to the formula 𝑥𝑖 = 𝑥𝑖 +
𝑣𝑖. The algorithm repeats the process of updating the velocity and position until the stopping criterion 

is reached. 

In the context of MPPT, PSO is used to find the optimal combination of voltage and current 

that provide the maximum power of the solar panel. Each particle represents a possible combination 

of (𝑉, 𝐼), and the objective function is the output power: 𝑓(𝑉, 𝐼) = 𝑃 = 𝑉 ∙ 𝐼 
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Experiments 

In the course of the study, three hybrid MPPT models were developed and tested: NN-GA, 

PSO-GA and NN-PSO. Their performance was evaluated by key indicators: maximum power, re-

sponse time and noise immunity, the results of which are presented in Table 1 and the corresponding 

figures. First of all, synthetic data for solar panels with different noise levels (10%, 20%, 30%) were 

created, successfully generated and saved in a csv file (Figure 1). This includes voltage, current and 

power data, which will be used to test the models. 

 

 
 

Figure 1. Power Data with Noise 

 

NN-GA. Next, a hybrid NN-GA model was implemented using this data. The neural network 

architecture included an input layer with 2 neurons corresponding to the input variables, 2 hidden 

layers with 10 neurons each and the ReLU activation function, and an output layer with 1 neuron and 

a linear activation function. This configuration was chosen to efficiently model nonlinear dependen-

cies between input and output data. A genetic algorithm was used to optimize the network parameters. 

An individual in the algorithm was a one-dimensional array containing all the weights and biases of 

the network. The population size was 20, and the number of generations was 5. The crossover operator 

was implemented as a mixture with a coefficient of 0.5 for the efficiency of combining parameters 

between individuals. To prevent getting stuck in local minima, a Gaussian mutation was used with 

the following parameters: mean 0, standard deviation 0.1, and the probability of mutation of each 

parameter 0.2. Tournament selection with tournament size 3 was used to select the strongest individ-

uals for subsequent generations. 

The settings were chosen to provide a balance between computational efficiency and model 

accuracy. Limiting the number of generations and population size allowed to speed up the optimiza-

tion process while maintaining sufficient accuracy. The use of tournament selection and mutation 

facilitated exploration of the solution space and avoided getting stuck at suboptimal points. 

A combination of a neural network and a genetic algorithm was chosen to provide a more effi-

cient search for optimal model parameters. The genetic algorithm is capable of finding global optima 

in complex spaces, which complements traditional optimization methods such as gradient descent. 

The approach was chosen given the limited amount of data and the presence of noise. 

When testing the model on data with a noise level of 20%, the following results were obtained: 

Test Loss 0.1328, MAE 0.3310 

A value of 0.1328 Test Loss indicates a relatively low error, especially if the target values 

(power) were normalized in the range [0, 1]. In this case, the result can be considered good. A value 
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of 0.3310 MAE is also moderate, but the accuracy can be improved. If the power is normalized, the 

absolute error of 33% is acceptable, but can be reduced by further optimization of the model. 

PSO-GA. Next, a hybrid model of neural network parameter optimization was implemented 

based on a combination of particle swarm optimization (PSO) and genetic algorithm (GA). This 

model uses PSO to roughly tune the parameters, and GA performs their subsequent refinement, which 

allows for an effective combination of global search and local optimization. The neural network 

model included 2 hidden layers with 10 neurons each and the ReLU activation function. The follow-

ing settings were used to optimize the PSO parameters: the inertia coefficient was 0.5, the cognitive 

and social component coefficients were 1.5, the particle population size was set to 20, and the total 

number of iterations was 10. The particles updated their positions based on their own and global 

success history to quickly explore the parameter space. 

Based on the found solution, the particle swarm method passed the optimized parameters to the 

genetic algorithm, which refined them using crossover and mutation operations. The following pa-

rameters were chosen for the genetic algorithm: crossover probability of 0.5, mutation probability of 

0.2, and the total number of generations was 5. The population size for the genetic algorithm was also 

20. 

These settings were chosen to provide a balance between computational efficiency and model 

accuracy, as well as to minimize the mean square error during the testing phase. Test results: Test 

Loss: 0.0484, Test MAE: 0.1714 

NN-PSO. The last to be implemented was a hybrid neural network model, the parameters of 

which were optimized using the particle swarm optimization (PSO) algorithm. The architecture of 

the hybrid models is the same as in the pairs of the previous two. 

Results: Test Loss 0.0411, MAE 0.1565 

 

Final test and discussion 

After training the models, their speed of adaptation to changes (response time), energy extrac-

tion efficiency (maximum achieved power) and noise immunity were tested. 

The NN-GA model showed the maximum power of 35.82 W, which is inferior to other models, 

but compensated for this with the shortest response time - 0.0036 s / prediction. However, its accuracy 

significantly decreased with increasing noise level. For example, at a noise level of 30%, the loss was 

0.3936, and the MAE reached 0.5910, as can be seen from the data in Table 1. 

In contrast, PSO-GA demonstrated the highest power, reaching 100.24 W, and high noise im-

munity. At 30% noise level, its MAE was only 0.2062, as confirmed by Figure 2. However, the re-

sponse time of this model was slightly higher than that of NN-GA, amounting to 0.0043 s/prediction. 

The most balanced results were shown by the NN-PSO model. With a maximum power of 45.90 

W and a response time of 0.0045 s/prediction, it demonstrated the best noise immunity among all 

models. For example, at 20% noise level, its MAE was only 0.1537, which is the lowest value among 

all the studied approaches. 

The comparative analysis presented in Figures 3 and 4 confirms that the models using PSO 

cope with the power extraction task more efficiently, especially in high noise conditions. However, 

NN-GA remains preferable when minimizing response time is required (Figure 5). 

 
Table 1 

Performance of Models under Noise (MSE and MAE) 

 

Model 
Noise level (MSE) Noise level (MAE) 

0.1 0.2 0.3 0.1 0.2 0.3 

NN-GA 0.4332 0.4371 0.3936 0.6193 0.6333 0.5910 

PSO-GA 0.0494 0.0490 0.0690 0.1731 0.1727 0.2062 

NN-PSO 0.0409 0.0388 0.0432 0.1565 0.1537 0.1611 

 



J.V.Najafli / Proceedings  2 / 2024, 84-91; DOI: 10.61413/MISF1938 

Informatics 

89 

Table 2 

Models’ MP and response time 

 

Model Maximum Power (W) Response time (s/pred.) 

NN-GA 35.82 0.0036 

PSO-GA 100.24 0.0043 

NN-PSO 45.90 0.0045 

 

 
 

Figure 2. Performance of Models under Noise – MAE 

 

 
 

Figure 3. Performance of Models under Noise – Loss (MSE) 
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Figure 4. MPP for each model (Denormalized results) 

 

 
 

Figure 5. Response time for each model 

 
Conclusion 

The comparative evaluation of three hybrid MPPT models—NN-GA, PSO-GA, and NN-

PSO—demonstrated the unique advantages and limitations of each approach. The NN-GA model 

excelled in minimizing response time, making it suitable for applications requiring rapid adaptation 

to changing conditions. However, its performance was less robust under noisy data, highlighting its 

limited applicability in unstable environments. The PSO-GA model achieved the highest maximum 

power output, demonstrating superior efficiency and robustness across all tested noise levels. This 

makes it an ideal choice for scenarios where power extraction is the primary objective. The NN-PSO 

model, while achieving intermediate results in response time and maximum power, exhibited the 

highest robustness to noise, as evidenced by its low MAE at varying noise levels. This balance sug-

gests its suitability for environments characterized by fluctuating and noisy conditions. 



J.V.Najafli / Proceedings  2 / 2024, 84-91; DOI: 10.61413/MISF1938 

Informatics 

91 

These results underscore the importance of selecting an MPPT algorithm based on specific op-

erational priorities, whether it be response time, power extraction efficiency, or noise robustness. 

Future research could explore advanced hybridization techniques, integrating additional machine 

learning algorithms or optimization methods to further enhance MPPT performance in diverse real-

world conditions. 
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