

PRACTICAL INTEGRATION OF ISO 9001 AND ISO/IEC 17025 FOR INDUSTRIAL QUALITY CONTROL AND TECHNICAL COMPETENCE

Mahammadali Gazanfar Aliyev, Arzu Eldar Ibrahimova

Azerbaijan State Oil and Industry University, Baku, Azerbaijan

mahammadaliyaliev0@gmail.com, https://orcid.org/0000-0001-8377-5503

arzu.ibrahimova@asoiu.edu.az, https://orcid.org/0000-0002-3646-323X

Abstract. The ceaseless pursuit of stopping and sustaining quality control became an ideal with which organizations strive to keep their competitiveness and trust. Considered to be the most prominent worldwide quality management framework, ISO 9001 proposes a systematic approach towards process effectiveness, risk-based thinking, and customer orientation. However, while ISO 9001 represents the strategic foundation of quality systems, it does not address the direct technical competence of the testing and calibration laboratories. In this situation, ISO/IEC 17025 builds upon and complements those standards by ensuring logging is valid, reliable, and accurate in the test results. The paper sets ISO 9001 as a leader in sculpting credible quality control systems and looks into the extra value gained from technical reliability by ISO/IEC 17025. The comparative analysis shows that the integration of both standards provides a balanced framework that combines the best of management by way of laboratory competence. The evidence tends to show that while ISO 9001 renders life to organizational sustainability by means of strategic management, ISO/IEC 17025 makes technical credibility.

Keywords: *Quality management Systems, standard Integration, ISO/IEC 17025, technical reliability, ISO 9001, calibration.*

© 2025 Azerbaijan Technical University. All rights reserved.

INTRODUCTION

Achieving reliability, competitiveness, and sustainability requires quality control, a baseline requirement for today's ever-dynamic environment. Increasingly complex industrial processes, coupled with mounting regulatory, and customer expectations, have put the international standards in focus for implementation. Among these, ISO 9001 remains the most popular quality management framework applied. It guides an organization to structure itself and its operations to set up processes, observe them, and improve upon them while also advocating risk-based thinking, continual improvement, and customer satisfaction. Being universally applicable to diverse sectors underscores its stature as a leader in calling for the implementation of effective and sustainable quality management systems. [1-2]. Although the standard's high scope, ISO 9001 does not adequately focus on technical competency prerequisites in the laboratory setting. ISO/IEC 17025 fills this void by establishing benchmark requirements for the competence of testing and calibration laboratories. By ensuring the accuracy, validity, and reliability of laboratory results, the ISO/IEC 17025 standard adds technical depth to quality systems. While ISO 9001 lays official groundwork, ISO/IEC 17025 confirms that labs generate accurate and consistent results.

The synergy of these two standards enables the organization to set a clear way and optimize its resources (ISO 9001), in addition to ensuring that the laboratory is technically competent (ISO/IEC 17025). Together, they enhance stakeholder confidence, operational efficiency, and sustainable development. The study analyses the leadership role of ISO 9001 in quality control and the include value of ISO/IEC 17025 in laboratory competence. By checking the tools' integration, the paper seeks to demonstrate how firms can achieve balanced quality systems that support long-term resilience and competitive advantage [2].

METHODOLOGY

Evolution of Quality Management Standards

Organizations in today's competitive environment need to balance strategic quality management (to effectively protect the long-term health of the organization) and technical competency (to effectively build ongoing trust) to successfully eliminate viable competitors. ISO 9001 accurately

lays out a framework to ensure process effectiveness, risk-based thinking, and ultimately ensure customer orientation; however, ISO 9001 does not guarantee the technical validity of testing and calibration. This shortcoming results in a challenge for laboratories and organizations to demonstrate the accuracy and reliability of results. ISO/IEC 17025 is developed to enhance ISO 9001 and help organizations build technical credibility, however the integration of ISO 9001 and ISO/IEC 17025 to support a comprehensive quality system remains poorly explored [2-3].

Over the years, the definition of quality management has significantly changed. Historically, quality management was a rather limited activity that consisted largely of inspection activity, whether the product worked as expected, and deciding what to do with it if it did not meet requirements. Wider dimensions such as system improvement or future action were not considered [2]. The introduction of ISO 9001 in 1987 represented a notable change that shifted the viewing of this topic from product level checks to management system performance (knowing customer satisfaction was key). The subsequent improvements to ISO 9001 have continued to add topics such as improvement, leadership and alignment with the organization in the delivery of quality. Therefore, what began as a limited inspection perspective, has growth into an integrated, and holistic system to support organizational excellence.

ISO 9001 has grown to be the most recognized standard in the area of internationally recognized standards for quality management. It has become a symbol of a commitment to consistency and continual improvement within organizations. It provides a structured approach for organizations that want to improve process effectiveness, improve customer satisfaction, and manage risk. It establishes principles focusing on leadership and engagement, customer focus, engaging in realistic risk management, and a culture open to improvement as is embedded into the standard. Studies suggest organizations who implement ISO 9001 demonstrate greater operational discipline and better quality in their products and services leading to better customer trust. ISO 9001 can be used by almost any organization, and generalizes to almost any sector; there are no limitations on sectors in other spaces, i.e. service. It is also easy to align it with related standards like ISO/IEC 17025 for lab competence and management systems for environmental management systems and occupational health and safety management systems. It can create a more holistic approach to organizational performance and sustainability. [2]. ISO 9001 provides a general framework for quality management within organizations that is still useful, but it also removes the depth of technical rigor needed to be effective for laboratory environments. Laboratories that perform testing and calibration need to have expanded standards for technical competence, impartiality, traceability, and accuracy, and the best standard available for these attributes is ISO/IEC 17025 [3]. ISO/IEC 17025 provides internationally accepted requirements for technical competence and impartiality. Laboratories that meet the requirements of the standard must demonstrate clarifying methodology, calibrate instruments that are traceable to their comparisons, and provide for audits within documents that all result in providing and increase the validity of its results. Research has shown when laboratories are accredited ISO/IEC 17025 their errors are less, their data is more reliable, and their stakeholders trust them. Since ISO/IEC 17025 provides enhanced value for laboratory operations, it is not in competition; instead, ISO/IEC 17025 is necessary when promoting scientific integrity and successful operations [4].

Using ISO 9001 and ISO/IEC 17025 together means laboratories have a complete framework that can align both organizational quality management and technical competence. ISO 9001 is the framework for a successful management system: it places importance on leadership, customer satisfaction and continual improvement. ISO/IEC 17025 gives credibility to results from testing and calibration so they are valid, reliable, and accurate. Combining these standards together has shown to increase efficiency through eliminating duplicate documentation, maximize resources included and improving improved communication collaboration from leadership to the technical side of an organization [4]. This relationship improves risk management and customer confidence, which also directly improves credibility related to laboratory results. However, there are challenges that laboratories have

faced in applying these standards. Possible barriers include moving towards more bureaucratic protocols involved in having an extensive amount of documentation, included learning curves some staff might encounter from the review and revision of policies and procedures; as well as time and resource commitments. To be able to realize the intended result from the dual implementation of these standards, laboratories should be clear in assigning roles and responsibilities, streamline processes, and find out which departments need to improve working effectively together, if applicable through to the management side and staff and technical teams, to remove unnecessary bureaucracy in working together, and to improve overall efficiency of the laboratory [3].

Data Sources: We got data from two main types of sources. The first kind, primary sources, was stuff like lab quality books, standard work steps (SOPs), ISO check reports, and in-lab tuning records. The second kind, secondary sources, had scholarly papers, books, industry reports, and official ISO rules (ISO 9001:2015 and ISO/IEC 17025:2017). Using both primary and secondary sources let us see real, hands-on stuff and also base our work on solid theory.

- **Document Check:** We look into lab steps, quality guides, and audit logs to see if they fit with ISO 9001 and ISO/IEC 17025.

- **Discussions:** We have planned talks with quality heads and lab staff to learn about real problems, good points, and thoughts on using two standards.

- **Observation:** We observe laboratory operations to ensure compliance with established protocols and to evaluate the efficiency and overall performance of the workflow.

For this work, we mixed many ways of study which included looking at files, talking to people, and watching how things are done. This was to look into how ISO 9001 and ISO/IEC 17025 standards fit into quality check systems. We first looked at lab quality books, how things are usually done, and ISO check reports to see if they met both standards. This let us spot how manager needs under ISO 9001 and skill needs of ISO/IEC 17025 align. We saw places where they overlapped, where there were gaps, and chances to make things better, setting a strong base for a deep quality check. We also spoke to people such as quality heads, lab bosses, and tech workers. These talks were to gather real thoughts on the hard points, good things, and what you need to use both standards at once. People shared their stories on joining the two, how well training worked, changes in workflow, and how it all affected the lab and the whole place's work [5]. The talk brought clear details on how this two-rule plan works in real life and what helps make it work well. Also, we watched lab work to see if it met the written rules and worked well. Watching helped check if the steps are used right and showed how manager and tech rules are kept in real use. This was key to find differences between what the rules say and what really happens in labs, giving real info for making things better (Figure 1) [6].

Figure 1. Data collection scheme

Then, we looked at the data by comparing and spotting themes. We found where ISO 9001 and ISO/IEC 17025 fit together or added to each other, and looked at how place leadership and tech trust work together. We focused on how well things work, lab rightness, can track back sources, cutting mistakes, and trust from people who care. The aim was to see how well the joined system works in both the managing and tech parts of quality control. Even with our full method, some limits were there. We had little access to private lab info, which cut down the kinds of main sources we could use. The number of labs we looked at was quite small, which might affect how wide we can apply what we found. Also, different ways labs work in different areas might sway results. To deal with these issues, we used data from many sources like inside files, talks, watching, and known studies. This mix made our findings sounder and fairer, making sure our ending points covered both the idea and real use of joined quality control systems [7].

Good quality control in today's labs depends a lot on smart planning based on risks and setting clear goals that you can check. In places that do tests, calibration, or make things, it is key to look ahead for possible errors and make plans to avoid them to keep high standards. By spotting risks early, labs can stop many mistakes, get better at what they do, and work more smoothly. This way, they don't just fix problems when they happen but can get ahead of them, making sure they deal with issues before they affect their work or make customers unhappy.

In labs, risk planning means checking all parts of a test from start to end. Things that might go wrong include tools breaking, people making mistakes, dirty samples, or wrong measuring ways. By thinking about these things early on, labs can set up steps like standard ways of working, checking tools often, and making sure testing ways work right. With clear goals in place, this plan makes sure all parts of a lab work well together, meeting the quality the organization wants and supporting both the tech and management sides. Setting goals is a big part of this planning. Labs make goals that are clear, measurable, doable, important, and timely (SMART) for improving quality control. These might be goals like cutting down mistakes, getting more reliable test results, teaching staff better, or giving results faster. When these goals connect to checking risks, labs can tackle the most important tasks that help them work better and more dependably. Tying goals and risk checks together gives a strong plan for ongoing improvement, helping labs keep track and tweak their methods as needed based on what they find (Figure 2).

Figure 2. Risk management process.

This kind of planning helps use resources well and gets staff involved. By knowing where errors or waste might happen, managers can use tools, training, and people better, making sure every part of the lab works its best. Workers understand their roles better and what could go wrong, leading to a workplace that fixes issues before they happen. Labs that work this way see real gains like better rule-following, fewer problems, and more trust from those they work with and serve.

Finally, bringing risk-based planning and goal setting together supports long-lasting improvement and good quality control. By keeping an eye on risks and tying them to specific goals, labs stay ready to meet new tech needs, rules, and what customers want. With a focus on staying ahead, accurate checking, and ongoing review, quality control stays solid, helpful, and ready for the future, building a base for top technical work and overall success [8].

Combining managerial quality standards and technical laboratory practices offers great benefits but also presents extreme operating challenges. The primary challenge involves coordinating organizational management processes with technical laboratory procedures. Management standards are leadership, strategic planning, and workplace safety oriented, whereas laboratory standards prioritize methodological accuracy, documentation, validation, and result reliability [7]. In reality, laboratories often encounter conflicts in attempting to harmonize these methodologies with one another and, as a consequence, potential inefficiencies, documentation inconsistencies, and workflow reductions. Good communication, clear roles, and ongoing monitoring are needed to minimize risks that could undermine quality. Workload and resource management is another needed challenge. Laboratories must invest large amounts of time, money, and man-power to provide training, maintain equipment, perform audits, and adhere to dual regulatory requirements. Smaller labs, on the other hand, may struggle to maintain adequate staffing and finances to fund such needs in a sustainable manner. To put it simply, recent review of a mid-sized lab revealed that adherence to managerial and technical standards introduced around 30% documentation burden, which underscored the importance of strategic planning and risk-based methods for maintaining operational effectiveness. Change management is also of utmost importance. Implementation of two sets of standards requires laboratory alteration of workflows, updating procedures, and restating staff roles [8]. Inability to train or opposition to change may be a hindrance to conformity. Empirical evidence shows that laboratories having frequent training, workshops, and scenario drills achieve higher conformity to standards while maintaining staff interest. Successful proactive risk assessment and correction planning optimize preparedness whereby small errors do not escalate into significant quality issues. Technology solutions have a significant role to play in the future in terms of handling integration problems. Automation, Laboratory Information Management Systems (LIMS), and intelligent monitoring technologies improve data monitoring, facilitate monitoring of compliance in real-time, and reduce human errors. For instance, the application of an automated laboratory system reduced manual data entry errors by over 40% and improved test and audit monitoring, demonstrating the capability of technology in integrated quality management [9]. International harmonization of quality standards is also a future path. International laboratories must demonstrate conformity with disparate regulatory requirements and customer expectations. Comparative analysis and international benchmarking exercises help ensure consistency, gain confidence in laboratory results, and enhance stakeholder confidence. Finally, continuous learning is a necessity. Training of employees in new standards, computer software, and risk management ensures long-term adaptation of managerial and technical quality requirements [10]. Labs that focus on ongoing learning achieve higher operational confidence, adaptability, and long-term effectiveness in possessing total quality systems.

Conclusion

This study shows that mixing good management planning with high lab skill boosts how well and how trusty quality control systems work. By using clear management steps with strong tech rules,

labs can get better at measuring things, keeping methods the same, and working more well. The review points out how key it is to plan with risks in mind, set clear goals, and keep checking everything to stop mistakes and fix wrongs.

The findings also show that when laboratory management and technical methodologies are effectively integrated, positive outcomes are achieved. Laboratories that use both rules see clearer jobs, better discussions between bosses and laboratory workers, and smarter use of what they have. Some problems like more papers to fill, more work for staff, and hard starts were seen; however, clear steps such as training workers, making work flow better, and using tech can solve these well. Looking ahead, joining management and tech rules lays the ground for strong, ready-for-the-future quality setups. Tech growth, going digital, and always getting better will help labs do even better, be more trustworthy, and follow rules well. In all, the study proves that using both ways helps build a setting of always getting better, makes those involved trust more, and keeps lab work strong, tough, and good.

REFERENCES

1. Alshahrani M.A., Husain K. The effectiveness of the implementation of ISO 9001 on SMEs performance: the case of an emerging economy. *Int. J. of Quality & Reliability Management*, vol. 41, no. 3, pp. 612–630, 2023.
2. International Organization for Standardization. (2017). ISO 9001:2015 – Quality management systems — Requirements. Geneva: ISO
3. ISO/IEC 17025:2017 – General requirements for the competence of testing and calibration laboratories. Geneva: ISO/IEC.
4. Azərbaycan Standartlaşdırma İstitutu. (2019). ISO/IEC 17025:2017 – Sınaq və kalibrəmə laboratoriyalarının kompetensiyası üçün tələblər. Bakı: AZSTAND.
5. Kumar A. Risk-based planning in modern laboratory management systems. *Int. J. of Quality & Reliability Management*, vol. 37, no. 5, pp. 825–839, 2020.
6. Panagiotidou E., Chountalas P.T., Magoutas A.I., Georgakellos D.A. & Lagodimos A.G. Systematic Identification and Validation of Critical Success Factors for ISO/IEC 17025 Implementation, 2024.
7. Azərbaycan Standartlaşdırma İstitutu. (2018). ISO 9001:2015 – Keyfiyyət idarəetmə sistemləri. Tələblər. Bakı: AZSTAND.
8. Wickramaratne K.A.C. Risk based quality management: the way forward to improve quality in medical laboratories. *Sri Lanka Journal of Haematology*, vol. 15, no. 1, pp. 12–18, 2023.
9. Həsənov R. Laboratoriyalarda ISO/IEC 17025 standartının tətbiqi və texniki səriştə. Azərbaycan Dövlət Neft və Sənaye Universiteti, Elmi Jurnal, 2019, №4, s. 45-53.
10. <https://www.researchgate.net/publication/276901246> Quality management
11. https://iso-docs.com/blogs/iso-9001-qms/qms-risk-management-iso-9001?srsltid=AfmBOorLpmI3iA08Kg-_aUFEExPevegAuZ_CHeJz5S7Cf4IPXWBODuZCa
12. <https://mandeguidelines.iom.int/en/clone-methodologies-data-collection-and-analysis-monitoring-and-evaluation>

Accepted: 24.11.2025