

THE EVOLUTION OF THE PDCA CYCLE IN THE CALIBRATION PROCESS: FROM PROCEDURAL COMPLIANCE TO A STRATEGIC, RISK-BASED PARADIGM

Rashid Rashad Mammadov

Azerbaijan State Oil and Industry University, Baku, Azerbaijan

mamedovrashid05@gmail.com, https://orcid.org/0000-0001-5543-236X

Abstract. This article traces the evolution of the Plan-Do-Check-Act (PDCA) cycle's application in calibration processes, charting its transformation from a simplistic procedural loop to a sophisticated, strategic management framework. It aims to systematize the understanding of how metrological assurance has integrated principles of continuous improvement over time. The research employs a critical literature review and a qualitative synthesis of historical and contemporary practices in metrology and quality management. The analysis is framed by the transformative impact of key international standards, notably ISO 9001 and ISO/IEC 17025, alongside the disruptive potential of Industry 4.0 technologies. The study deconstructs the application of PDCA within calibration across distinct developmental eras. The analysis identifies three principal evolutionary stages. The first is a Compliance-Driven Loop, characterized by reactive, document-centric practices and fixed calibration intervals. The second is an Integrated Process Approach, where calibration becomes an integral component of the quality management system, incorporating concepts of measurement uncertainty and systematic corrective action. The third and current stage is the Strategic, Risk-Based Paradigm, or "Calibration 4.0." The primary contribution of this article is the conceptualization of this evolutionary trajectory, which has not been systematically addressed in prior literature.

Keywords: PDCA cycle, ISO/IEC 17025, quality management, risk-based thinking, Calibration 4.0.

© 2025 Azerbaijan Technical University. All rights reserved.

INTRODUCTION

Metrological calibration stands as the bedrock of empirical science and industrial production, serving as the formal process that ensures measurement results are accurate, reliable, and universally comparable. It is the indispensable activity that underpins metrological traceability – the unbroken chain of comparisons linking a measurement on the factory floor to a primary national or international standard [1, p. 51]. This traceability is not a mere academic exercise; it is the fundamental enabler of global commerce, allowing for the interchangeability of components manufactured continents apart. It guarantees the safety and efficacy of medical devices, the integrity of pharmaceutical formulations, and the validity of scientific research. Without a robust and rigorously managed calibration system, an organization's claims of quality, safety, and conformity are built on an unverifiable foundation, exposing it to significant technical, financial, and reputational risks. The data derived from measurements becomes suspect, rendering process control efforts arbitrary and product acceptance decisions unreliable.

Concurrently, the Plan-Do-Check-Act (PDCA) cycle, a concept originating with Walter A. Shewhart's work on statistical process control and later championed by W. Edwards Deming as a cornerstone of his management philosophy, represents the quintessential model for continuous improvement [2, pp. 413-415; 3, pp. 124-130]. While often depicted as a simple four-step loop, its theoretical underpinnings are profound. It is an iterative, dynamic model for organizational epistemology – a method by which an organization systematically learns from its experiences, corrects deviations, and institutionalizes improvements. As codified in successive versions of the ISO 9001 standard, the PDCA cycle has evolved from a tool for shop-floor problem-solving into an overarching framework for strategic management, applicable to every process within a Quality Management System (QMS).

The inherent symbiosis between these two pillars of quality science – calibration and the PDCA cycle – is profound yet often understated. Calibration provides the objective, reliable data that fuels the 'Check' phase of the cycle. It is the sensory apparatus of the QMS, translating physical properties into quantitative information. Without properly calibrated instruments providing measurements with a known and suitable uncertainty $u(y)$, the "Check" phase is compromised by GIGO ("garbage in, garbage out"), rendering the subsequent "Act" phase ineffective or even counterproductive. Despite this critical interdependence, the integration of these concepts has not been static. Their relationship has co-evolved, shaped by maturing standards, technological revolutions, and a more sophisticated understanding of risk. This paper argues that the application of PDCA to the calibration process itself has followed a distinct evolutionary path, transforming from a perfunctory compliance activity into a dynamic, strategic function central to modern organizational resilience and performance.

METHODOLOGY

Problem Statement

Despite the conceptual synergy between the goals of calibration (measurement assurance) and PDCA (continuous improvement), the specific application and evolution of the PDCA cycle within the specialized domain of calibration have not been systematically analyzed in academic literature. Initial adoptions of quality systems often treated the application of PDCA to calibration in a superficial, procedural manner, focusing on scheduling and record-keeping rather than genuine process improvement. The literature lacks a longitudinal perspective that tracks how this application has matured from a rudimentary compliance mechanism into a sophisticated, risk-based strategic function. Consequently, its full potential within the context of modern technological advancements is not fully conceptualized.

This article begins with a review of the foundational literature on the PDCA cycle and calibration process management. The core of the paper is a chronological and thematic analysis of the three distinct evolutionary phases of PDCA's application in calibration. Following this analysis, a discussion section explores the implications of this evolution, presents a refined conceptual model of a modern PDCA cycle for calibration, and analyzes its challenges and enablers. The paper concludes by summarizing its contributions and proposing directions for future research.

The PDCA Cycle in Quality Management

The PDCA cycle is an iterative four-step management method used for the control and continuous improvement of processes and products. Originally conceived by Walter Shewhart, it was widely promoted by W. Edwards Deming as a systematic approach to learning and improvement [3, p. 41-43]. The four phases are:

- Plan: Establish objectives and processes necessary to deliver results in accordance with the expected output (the target or goals).
- Do: Implement the plan, execute the process, make the product.
- Check: Study the actual results (measured and collected in "Do") and compare against the expected results (targets or goals from the "Plan") to ascertain any differences.
- Act: Request corrective actions on significant differences between actual and planned results. Analyze the differences to determine their root causes and implement systemic changes.

The ISO 9001:2015 standard explicitly embeds this logic into its structure, advocating for a process approach that incorporates PDCA thinking and risk-based thinking at all levels of an organization's Quality Management System (QMS).

Calibration Process Management and Key Concepts

The management of calibration processes is governed by a distinct body of knowledge and standards, primarily ISO/IEC 17025 ("General requirements for the competence of testing and calibration laboratories"). Central to this field are several key concepts:

Metrological Traceability: The property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty [1, p. 51].

Measurement Uncertainty: A non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used. The evaluation and expression of uncertainty are standardized by the "Guide to the Expression of Uncertainty in Measurement" (GUM), which provides a rigorous mathematical framework for its calculation, often expressed as a standard uncertainty, $u(y)$, or an expanded uncertainty, $U = k \times u(y)$, where k is a coverage factor.

Conformity Assessment: The process of determining whether a given instrument or measurement result conforms to specified requirements, often involving decision rules that account for measurement uncertainty.

The literature on QMS thoroughly covers PDCA, and the metrology literature provides exhaustive detail on calibration management. However, the intersection of these two fields is often treated implicitly. Publications may mention "managing the calibration program" within a QMS, but few critically analyze how the PDCA methodology has been, and should be, applied specifically to the calibration process itself. The existing body of work lacks a dedicated analysis of the evolutionary trajectory of this application, failing to connect the dots between the shift in quality management paradigms (from compliance to risk-based thinking) and the corresponding maturation of calibration practices. This article aims to fill that specific gap [4].

The Evolutionary Trajectory of PDCA in Calibration

The application of the Plan-Do-Check-Act cycle to calibration is not a monolithic concept but a dynamic one that has matured significantly. Its trajectory can be deconstructed into three distinct, sequential paradigms, each shaped by the prevailing quality management philosophies, international standards, and technological capabilities of its era. This section provides a detailed analysis of this evolution, from a perfunctory procedural loop to an integrated strategic system.

Phase 1: The Compliance-Driven Loop (The Traditional Era)

This initial phase corresponds to the early adoption of formal quality systems (e.g., ISO 9000:1987) where the focus was heavily on documentation and demonstrable compliance. The application of PDCA was often superficial, treating calibration as an isolated, technical necessity rather than a process to be improved.

PLAN: The "plan" was fundamentally a schedule, not a strategy. Calibration intervals were established based on generic, one-size-fits-all criteria, predominantly OEM (Original Equipment Manufacturer) recommendations or arbitrary industry norms (e.g., the ubiquitous "annual calibration"). This calendar-based approach lacked empirical justification specific to the instrument's application, environment, or observed performance. Planning was devoid of risk assessment; a low-impact, non-critical gauge was often subject to the same rigid interval as a high-precision standard used for final product acceptance. The objective was simply to have a plan that an auditor could verify.

DO: The execution phase was centered on the procedural act of calibration. A technician would follow a documented procedure, perform the comparison, and record the results. The emphasis was on the ritual of the task and the creation of a calibration record or certificate – the physical evidence that the "doing" had occurred. Critical metrological concepts, such as a formal evaluation of the measurement uncertainty, were often absent or poorly understood outside of high-level laboratories.

CHECK: Verification was rudimentary, typically a binary comparison of the "as-found" measurement result against a static, pre-defined tolerance. The outcome was a simple pass/fail determination, often signified by a green "Calibrated" sticker. This check failed to account for the uncertainty of the calibration measurement itself. A result falling just inside the tolerance limit, when considering the expanded uncertainty (U), might have a significant probability of being truly out-of-tolerance, a nuance completely lost in this paradigm [5, p. 26].

ACT: Action was exclusively reactive and corrective, not preventative. If an instrument failed calibration (i.e., was found out-of-tolerance), the standard action was to adjust or repair it until it passed. This fulfilled the immediate need to return a functional instrument to service. However, it rarely triggered a deeper inquiry. The root cause of the instrument's drift or failure was not investigated, nor was there a systematic process to evaluate the potential negative impact of its out-of-tolerance state on products measured since its last valid calibration. The PDCA loop was closed at the level of the individual instrument, with no feedback to the broader system.

Analysis: This phase is best characterized as a Tayloristic, document-centric model. It treated calibration as a discrete, disconnected task focused on maintaining the operational status of equipment. The PDCA cycle was a micro-cycle, confined to the instrument itself, and served primarily as an artifact for auditors. It was a system designed to demonstrate control, but it lacked the mechanisms for genuine process understanding or systemic improvement.

Phase 2: The Integrated Process Approach (The ISO 9001:2000 and ISO/IEC 17025 Era)

The release of ISO 9001:2000, with its mandate for a "process approach," and the maturation of ISO/IEC 17025 as the global standard for laboratory competence, served as powerful catalysts for change. These standards compelled organizations to view calibration not as an isolated task, but as a critical process interconnected with other parts of the QMS [6, p. 7].

PLAN: Planning became an analytical and evidence-based activity. The simplistic calendar-based schedule gave way to methods for optimizing calibration intervals. Organizations began to analyze historical "As Found/As Left" data to determine the actual stability and reliability of their instruments in their specific use-case. The criticality of the measurement became a key input; a high-risk measurement point would warrant a shorter interval and a more rigorous uncertainty requirement. The concept of Test Uncertainty Ratio (TUR) or Target Uncertainty became part of the planning phase to ensure the calibration was fit for its intended purpose.

DO: The execution of the calibration became significantly more rigorous. Adherence to ISO/IEC 17025 demanded the formal estimation and reporting of measurement uncertainty [7, p. 13-14]. This required constructing detailed uncertainty budgets, which systematically identified all significant sources of uncertainty (u_i), quantified them, and combined them to calculate a combined standard uncertainty and an expanded uncertainty. Documentation of environmental conditions, traceability chains, and the specific methods used became mandatory.

CHECK: Verification evolved into a multi-faceted analytical review. The simple pass/fail check was now augmented by an analysis of the instrument's performance trends over time. Guard banding techniques, where acceptance limits are made tighter than the tolerance limits to account for measurement uncertainty, were implemented to manage the risk of incorrect conformity decisions. Crucially, an out-of-tolerance (OOT) finding became a major non-conformance that triggered a formal impact assessment – an investigation to identify and quarantine any product potentially affected by the faulty measurements.

ACT: The "Act" phase matured from simple correction to systematic corrective and preventive action. An OOT event would initiate a formal Root Cause Analysis (RCA), using tools like Ishikawa diagrams or 5 Whys to understand the underlying reasons for failure (e.g., harsh environment, improper usage, instrument aging). The results of the RCA would lead to systemic actions, such as modifying the calibration procedure, improving environmental controls, or replacing an unsuitable instrument model. Furthermore, the data from the "Check" phase (trend analysis, interval history) was used to act on the calibration program itself, providing an empirical basis for adjusting intervals—lengthening them for stable instruments to save costs and shortening them for unstable ones to reduce risk.

Analysis: This phase marks a paradigm shift from an instrument-centric to a process-centric view. Calibration is now understood as a process with defined inputs, outputs, and performance metrics. The PDCA cycle expands to encompass the entire calibration management system, creating feedback loops that drive continuous improvement in metrological assurance and risk control.

Phase 3: The Strategic, Risk-Based Paradigm (The "Calibration 4.0" Era)

The current and emerging phase is driven by the confluence of risk-based thinking, as formally mandated by ISO 9001:2015, and the technological capabilities of Industry 4.0. This paradigm elevates calibration from a quality assurance process to a strategic, data-driven function for enterprise-wide risk management and optimization.

PLAN: Planning transcends operational scheduling to become a strategic, predictive, and risk-based function. It is directly integrated with enterprise risk management frameworks (ISO 31000). The primary driver for calibration is no longer a time interval but a calculated risk profile. Artificial intelligence (AI) and machine learning (ML) algorithms are employed to analyze vast datasets – including historical calibration data, real-time sensor readings from IoT devices, usage patterns, and environmental parameters – to predict instrument drift and probability of failure. This enables a shift

from preventive (time-based) to predictive (condition-based) calibration, where maintenance is performed only when needed, optimizing cost and maximizing uptime. The plan also incorporates the Cost of Poor Quality (COPQ), quantifying the financial impact of measurement error to justify investment in higher-precision metrology.[8, p. 8]

DO: Execution is characterized by automation, digitalization, and interconnectivity. Automated calibration benches perform complex procedures with minimal human intervention, dramatically reducing measurement variability. Smart sensors with embedded intelligence perform continuous self-diagnostics and can even initiate alerts when their performance degrades. The output of the calibration is no longer a static PDF document but a machine-readable Digital Calibration Certificate (DCC). This structured data file can be automatically ingested by manufacturing execution systems (MES), enterprise resource planning (ERP) systems, and digital twins, eliminating manual data entry and enabling seamless information flow.

CHECK: Verification becomes a continuous, real-time, data-intensive process. Instead of waiting for a periodic check, instrument health is monitored constantly via IoT streams. Big data analytics platforms aggregate information from the entire population of instruments across an enterprise. They can detect subtle, systemic trends that would be invisible to instrument-by-instrument analysis – for instance, identifying that a specific instrument model underperforms globally when exposed to certain process chemicals. The "check" is against dynamic control limits and predictive models, not just static tolerances.

ACT: Action becomes proactive, adaptive, and systemic. The feedback loop from the "Check" phase is immediate and its scope is enterprise-wide. The insights generated are used not just to adjust the calibration strategy, but to drive broader business improvements. This is prescriptive action. For example:

Procurement: Analytics showing high drift rates for a certain instrument model will trigger a change in purchasing specifications.

Engineering: Data revealing a process measurement is consistently operating close to its tolerance limit can drive a product or process redesign to build in more margin.

Operations: A predictive alert of impending instrument failure allows maintenance to be scheduled during a planned shutdown, preventing costly, unplanned production halts.

Analysis: This phase represents a fundamental transformation of calibration from a backward-looking verification activity into a forward-looking, strategic intelligence function. The PDCA cycle becomes a dynamic, self-learning, and algorithmically-enhanced system embedded within the organization's cyber-physical infrastructure. Calibration is no longer merely a "cost of quality" but a strategic asset that generates actionable data for mitigating risk, optimizing processes, and creating a competitive advantage.

Implications of the Evolution

The evolution from a compliance-driven loop to a strategic, risk-based paradigm carries profound implications. The role of the metrology department and its professionals is fundamentally changing. The focus is shifting from the physical act of calibration to the management and analysis of measurement data. Metrologists are becoming data scientists, risk managers, and strategic advisors who translate measurement information into actionable business intelligence. This elevates the function from a technical support cost center to a strategic partner that directly contributes to operational excellence and risk mitigation.

The transition to the "Calibration 4.0" model is not without its hurdles. Key challenges include the significant initial investment in digital infrastructure, the need to develop new competencies in data science and AI within the metrology workforce, ensuring the cybersecurity of interconnected measurement systems, and managing the cultural shift required to embrace data-driven decision-making.

However, several enablers can facilitate this transition. Strong leadership commitment and a clear vision for the strategic role of metrology are paramount. The development of interoperable standards for Digital Calibration Certificates (DCCs) will be crucial for creating seamless data ecosystems. Finally, a modular, scalable approach to implementation can allow organizations to progressively build their capabilities without prohibitive upfront costs.

A Refined PDCA Model for Modern Calibration

The contemporary PDCA cycle for calibration can be conceptualized as a strategically-oriented loop with distinct inputs, processes, and outputs.

PLAN (Risk-Based): The 'Plan' stage is no longer initiated by a calendar but by inputs from the enterprise risk management system, process criticality analysis, and predictive AI models. The objective is to define a measurement assurance strategy that optimally balances cost, risk, and performance.

DO (Automated): The 'Do' stage is characterized by automated execution and the generation of rich, machine-readable data (DCCs), creating a digital twin of the metrological process.

CHECK (Data-Driven): The 'Check' stage is a continuous analytics process. It leverages big data platforms to monitor performance in real-time and compare it against predictive models and risk thresholds, rather than static tolerances.

ACT (Strategic): The 'Act' stage generates strategic outputs. It provides feedback to adapt the risk models in the 'Plan' stage, initiates predictive maintenance, informs capital expenditure on new equipment, and provides data to engineering for process and product improvement. This creates a powerful, self-optimizing feedback system.

This refined model transforms the PDCA cycle from a simple, tactical tool for correcting deviations into a strategic framework for managing the asset of measurement information.

Conclusion

This article has systematically traced the evolution of the PDCA cycle's application in calibration, identifying three distinct phases: a compliance-driven loop, an integrated process approach, and the contemporary strategic, risk-based paradigm. By analyzing the drivers of this evolution – namely international standards and technological advancements – this paper provides a novel conceptual framework for understanding the maturation of calibration from a technical necessity to a strategic enabler. The proposed "Calibration 4.0" model reframes the PDCA cycle as a dynamic, intelligent loop, highlighting a paradigm shift in the field of metrology. This work opens several avenues for future research that are critical for advancing the field:

Empirical Studies: Quantitative research is needed to validate the cost-benefit analysis of implementing AI-driven, predictive calibration scheduling. Studies should focus on measuring the return on investment (ROI) through reduced failures, optimized maintenance costs, and improved process uptime.

Digital Trust and Integrity: As Digital Calibration Certificates become more prevalent, research into the role of blockchain technology for ensuring their immutability, security, and traceability is essential for building trust in digital metrology ecosystems.

Human Capital Development: Research is required to define the new competency models for metrology professionals in the Industry 4.0 era. This includes identifying the necessary skills in data analytics, AI, and risk management and developing curricula and training programs to address the emerging skills gap.

Integration with Digital Twins: Further investigation is needed on how real-time metrological data can be more deeply integrated with comprehensive digital twins of manufacturing processes to enable advanced simulation, prediction and control.

By pursuing these research avenues, the academic and industrial communities can collaboratively build the theoretical and practical foundations for the next generation of measurement assurance systems.

REFERENCES

1. JCGM 100. Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM). “Joint Committee for Guides in Metrology”, 2008, 134 p.
2. Deming, W. E. Out of the Crisis. United States, “MIT press”, 2018, 454 p.
3. Shewhart, W. A. Statistical method from the viewpoint of quality control. Washington, “The Graduate School, The Department of Agriculture”, 1939. 178 p.
4. Moen, R., & Norman, C. The history of the PDCA cycle. “In Proceedings of the 7th ANQ Congress”, pp. 3-9
5. JCGM 200. International vocabulary of metrology – Basic and general concepts and associated terms (VIM). “Joint Committee for Guides in Metrology”. 2012, 108 p.
6. ISO 9001:2015 Quality management systems – Requirements. “International Organization for Standardization.” 2015, 38 p.
7. ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. “International Organization for Standardization”, 2017, 30 p.
8. ISO 31000:2018 Risk management – Guidelines. “International Organization for Standardization”, 2018, 16 p.

Accepted: 27.11.2025