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Abstract. Personalized drug selection requires balancing therapeutic efficacy, adverse events, drug interactions, and
cost—objectives that are inherently conflicting. This study proposes a hybrid architecture integrating Mamdani fuzzy infer-
ence, ensemble machine learning, NSGA-II optimization, and Fuzzy DIBR Il ranking for multi-objective pharmacotherapy.
The Mamdani system encodes eight clinical safety rules to filter unsuitable patient-drug pairs based on renal and hepatic
function. Random Forest and XGBoost models trained on 44,692 pairs achieve AUC-ROC of 0.871 and 0.907 for efficacy
and adverse event prediction, respectively. NSGA-I1 generates nine unigque Pareto-optimal prescriptions over 30 generations.
Fuzzy DIBR Il elicits criterion weights from physician preferences modeled as triangular fuzzy numbers (¢ = 0.7), yield-
ing w, = 0.387 (efficacy), w, = 0.302 (safety), ws = 0.205 (interactions), w, = 0.105 (cost). The top-ranked pre-
scription achieves 84.4% efficacy, 39.4% adverse events, 11.6% interaction severity, and 608.60 AZN cost. Results demon-
strate clinically interpretable multi-criteria recommendations with explicit trade-off quantification.
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Introduction. Clinical pharmacotherapy is a complex multi-criteria decision problem that re-
quires clinicians to simultaneously balance therapeutic efficacy, adverse event risk, drug—drug inter-
actions, and treatment cost while respecting patient-specific physiological constraints [1]. EXisting
drug selection practices rely mainly on clinical guidelines and physician experience, typically opti-
mizing one dominant criterion and handling the others implicitly or via ad hoc rules [2].

Multi-objective optimization offers a principled way to generate sets of Pareto-optimal pre-
scriptions that represent distinct trade-off strategies instead of enforcing fixed preferences a priori.
Evolutionary algorithms such as NSGA-I11 provide efficient search and diversity maintenance, but by
themselves do not address two key clinical requirements: enforcing patient-specific safety constraints
and translating Pareto sets into actionable recommendations aligned with uncertain clinician prefer-
ences. Fuzzy logic and fuzzy MCDM methods are well-suited to encode linguistic clinical knowledge
and model uncertainty, while ensemble machine learning can provide robust data-driven predictions
of efficacy and adverse events.

This study proposes a hybrid five-stage decision-support architecture that integrates Mamdani
fuzzy safety filtering, ensemble machine learning (Random Forest and XGBoost) for patient-specific
outcome prediction, NSGA-II-based multi-objective optimization, and Fuzzy DIBR Il for uncer-
tainty-aware preference modeling [3]. Personalized drug selection is formulated as a constrained four-
objective problem that maximizes efficacy and minimizes adverse events, drug—drug interaction se-
verity, and cost under fuzzy safety constraints [4]. Experimental evaluation on a synthesized data yet
clinically realistic dataset with 1,000 patients and 50 drugs shows that the framework can generate
diverse Pareto-optimal multi-drug prescriptions and rank them into clinically interpretable strategies,
with the top solution achieving high predicted efficacy while maintaining acceptable safety and cost.

Related works. Multi-objective evolutionary algorithms have been used in healthcare for prob-
lems such as radiotherapy planning, chemotherapy scheduling, and dose optimization, where trade-
offs between tumor control and toxicity are critical. These studies demonstrate the value of Pareto-
based optimization but typically treat continuous dosing variables, rely on deterministic objective
functions, and do not incorporate patient-specific pharmacological safety constraints or discrete
multi-drug selection. Fuzzy logic has a long history in medical diagnosis and risk assessment, ena-
bling robust handling of imprecise laboratory values and linguistic clinical rules [5]. Mamdani-type
fuzzy systems and neuro-fuzzy models have achieved high diagnostic accuracy [6, pp. 177-179].
Several studies have shown that Random Forest, gradient boosting and graph-based models can ac-
curately predict drug response and adverse events from clinical and omics data.
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Multi-criteria decision-making methods such as AHP, TOPSIS, PROMETHEE, and their fuzzy
extensions have been applied to drug and health technology evaluation, showing how structured cri-
teria weighting can support formulary and reimbursement decisions [7]. However, these methods
usually rely on precise or simple fuzzy weights and do not explicitly represent uncertainty in prefer-
ence ratios. The DIBR family introduces ratio-based weight elicitation with a stronger theoretical
basis and recent fuzzy extensions, but has not yet been applied to pharmacotherapy to jointly capture
uncertainty in fuzzy preference ratios.

Mathematical modelling of multi-criteria drug selection. Let D = {d,, d,, ..., d,,} denote the
set of available drugs and p a fixed patient. A prescription is represented by a binary decision vector
X = [xq, X3, ..., x,]T € {0,1}", where x; = 1 indicates that the drug d; is included in the regimen and
x; = 0 otherwise. The number of selected drugs is constrained by the cardinality condition

n

1< xll = ) %<5 (1)

i=1

reflecting clinical practice in which only a limited number of concurrent medications is acceptable.
For each patient-drug pair (p,d;) a fuzzy safety system produces a scalar safety score
Stuzzy(P, d;) € [0,1]. This score combines age, renal and hepatic function, and drug-specific toxicity
into a continuous measure of suitability. The following hard safety constraint is imposed,
Stuzzy () di) = Tafery, VI such that x; = 1, where T, = 0.5 is a clinically chosen threshold.

Drugs violating this inequality are excluded from any admissible prescription. The quality of a
prescription x is assessed through four criteria: expected therapeutic efficacy, risk of adverse events,
severity of drug-drug interactions, and total treatment cost. These are modeled as objective functions
fi(X),j = 1,...,4, to be minimized simultaneously.

Machine learning models provide patient-specific probabilities P.(p, d;) of achieving suf-
ficient clinical response and P, (p,d;) of experiencing a clinically relevant adverse event. Let
J(x) = {i: x; = 1} denote the index set of selected drugs. The first two objectives are defined as

1 N

fix) = —mi;o Peee(p, d;), (2)
1 N

£.09 = oo iegz@ B.(p,dy), 3)

so that minimizing f; corresponds to maximizing mean efficacy, whereas minimizing f, reduces
the average probability of adverse events across all prescribed drugs. Potential pharmacological
conflicts between drugs are modeled through a symmetric interaction matrix — drug-drug interaction
- DDI € [0,1]™*", where DDI;; quantifies the normalized severity of the interaction between drugs

d; and d;. For any prescription containing at least two drugs, the interaction objective is

x) = 2 Z DDI 4
™) = I —D | 7z )

i,jeI(x)
i<j

representing the mean pairwise interaction severity; for single-drug prescriptions, f5(x) is set to zero.
Let C(d;) > 0 denote the monetary cost of the drug d; and C,.; a reference value used for
normalization (in the experiments, C,. = 200 AZN). The cost objective is given by

1
fix) = afi;(x) c(dy), (5)
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which scales the total cost to a dimensionless quantity of order one, facilitating joint optimization
with the other criteria. The multi-criteria drug selection problem for a patient p can therefore be writ-
ten compactly as the constrained multi-objective program,

e, F() = [/1(X), 20, f5 ), fa()]" (6)
1< ”xlll = S'Sfuzzy(p' dl) = Tsafety ,Vi€e f](X) (7)

A prescription x™ is said to Pareto-dominate another prescription x(® if

fi(x®) < £(xP),vj € {1,2,3,4}, (8)

and the inequality is strict for at least one objective. The set of all non-dominated feasible prescrip-
tions constitutes the patient-specific Pareto set. Subsequent sections describe how this formal model
is instantiated within a hybrid fuzzy-evolutionary decision-making framework that generates, evalu-
ates, and ranks Pareto-optimal multi-drug prescriptions.

Hybrid fuzzy—evolutionary decision-making framework. The fuzzy safety module employs
triangular membership functions defined as:

(0, ifx <a;
fﬁ ifa <x <b;
tri(x;a,b,c) =1 ._ ©)
== ifth<x<g¢;
c—b
0, ifx > c;

where a < b < c represent the lower bound, modal value, and upper bound, respectively. Three input
linguistic variables are defined as x,, € [18,90] years for a lifetime, xgpr € [15,120]
mL/min/1.73m? for Glomerular Filtration Rate (GFR) and, x,st € [10,150] U/L for Aspartate
Aminotransferase (AST). Each variable uses three fuzzy sets with triangular membership functions
in Table 1.

Table 1
Partitioning of variables into three fuzzy sets using triangular membership functions
Lifetime GFR AST
Hyoung () = tri(x; 18,18,40) Hpoor (X) = tri(x; 15,15,45) Unormal (X) = tri(x; 10,10,40)
”middle(x) = tri(x; 30,55,70) .umoderate(x) = tri(x; 35'60!85) #elevated(x) = tri(X; 30!60'90)
Helderty (X) = tri(x; 60,90,90) Pnormal (X) = tri(x; 75,120,120) Hnigh (X) = tri(x; 80,150,150)

The output variable, safety score s € [0,1], is partitioned into three fuzzy sets, tynsare(S) =
tri(s; 0,0,0.4), Umarginal($) = tri(s; 0.3,0.5,0.7) and, pg,¢(s) = tri(s; 0.6,1.0,1.0). The knowledge
base consists of eight IF-THEN rules encoding clinical safety constraints:

Ru: IF age is young AND GFR is normal AND AST is normal THEN safety is safe

R:: IF age is elderly AND GFR is poor THEN safety is unsafe

Rs: IF GFR is poor AND AST is high THEN safety is unsafe

Ra: IF age is middle AND GFR is moderate AND AST is elevated THEN safety is marginal
Rs: IF age is young AND GFR is poor THEN safety is marginal

Rs: IF age is elderly AND GFR is normal AND AST is normal THEN safety is safe

R~ IF age is middle AND GFR is normal THEN safety is safe

Rs: IF age is elderly AND AST is high THEN safety is unsafe
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For the input tuple (xX,ge, XGrr, XastT), the firing strength a; of rule R, is computed using the
minimum t-norm:
ay = min{ua, , (Xage), Ly, (XGrr) Hay, (Xast) } (10)

where Aj; denotes the antecedent fuzzy set for the variable i in rule k. The aggregated output mem-
bership function is obtained via maximum aggregation:

Hage(5) = max (min(a, ke, ()} (1)

where C, is the consequent fuzzy set of the rule k. Centroid defuzzification produces the crisp base
safety score:

fol S'Hagg(s) ds Z)er S Hage(S)) (12)

Sh = -3 =~ N
ase fO uagg(s) ds 2j=1 Hagg(sj)

where N = 1000 discretization points are used for numerical integration. The base safety score is
adjusted for drug-specific toxicity profiles:

Sfuzzy(pl d) = maX{O' Sbase — A(p' d)} (13)
where the penalty term is:

A(pr d) = BlTnephro(d) ' H(xGFR < 60) + ﬁzThepato(d) ' H(xAST > 60) + B3Tterato(d) ' Hpregnant (14)

with penalty coefficients, §; = 0.5, 5, = 0.6, 3 = 1.0 and T.(d) € {0,1} indicating drug toxicity
characteristics. For each safety-eligible patient—drug pair (p, d), a 10-dimensional feature vector is
constructed:

z = [age,BMI,GFR,AST,HbA Ic,severity, Ep,ee (d), Rpase (d), C(d),class(d)]” (15)

where patient features include age, body mass index (BMI), glomerular filtration rate (GFR), aspar-
tate aminotransferase (AST), glycated hemoglobin (HbAlc), and disease severity grade. Addition-
ally, drug features comprises on baseline efficacy Ey,..(d), baseline adverse event risk Ry,..(d), and
cost C(d). A Random Forest classifier with T = 100 decision trees and maximum depth hp,,x = 20
predicts the probability of high efficacy:

Pur(z) = = X7y he(2) (16)

where h,: R1® — {0,1} is the t-th decision tree trained on a bootstrap sample via Gini impurity mini-
mization:
|Sel

Gini(S) =1 — Yeeos (ﬁ)2 (17)

for a node sample set S with class subsets S, and S;. An XGBoost classifier with K = 100 boosting
iterations, maximum depth 6, and learning rate n = 0.1 models adverse event probability:

P(z) = 0(ZK; fi(@) (18)
where a(+) is the sigmoid function, and f;, minimizes the regularized objective:
train o= A eaves
L0 = g7 20y, 55T 4 fie(20) + YTieaves + 5215 W) (19)
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with logistic loss:
(y,9) = —ylog (¢(¥)) — (1 —y)log (1 — a(P)) (20)

complexity penalty y, and L? regularization parameter A. For two candidate solutions x* and x®,
solution x(*) Pareto-dominates x® (denoted x™ < x)) if and only if:

f;xD) < f;(x@) forall j € {1,2,3,4} (21)
3k € {1,2,34}: fi xV) < £, (xP) (22)

Let F. denote the set (front) of solutions that share the same non-domination rank r, where rank
is computed with respect to all objective values {f; (x), f2(x), f3(X), fa(x)} in the current population.
The first front F, thus contains all non-dominated solutions, i.e., all x for which there exists no other
solution y such that y < x. Non dominated sorting iteratively identifies F,,F, --- by counting, for
each solution, how many other solutions dominate it and grouping solutions with the same rank into
the corresponding front F,.. For solution i in front F, the crowding distance CD; quantifies how iso-
lated this solution is from its neighbors in objective space:

fj(i+1)—fj(f—1)
f]_max_fjmm

CD; = j?=1 (23)
where, within front F, solutions are sorted by objective j, f;(i + 1) and f;(i — 1) denote the objec-
tive values of the immediate neighbors of solution i along dimension j, and boundary solutions in F
receive CD; = oo to ensure their preservation. For this, NSGA-II operates with a population size
N,,, = 50 and evolves over ¢ = 30 generations [8]. Each individual is represented as a binary vector
of length equal to the number of safety-eligible drugs for the patient. Each individual is initialized by
randomly selecting 1-5 drugs from the safety-eligible set. Binary tournament selection based on non-
domination rank and crowding distance [9, pp. 45-52]. Bit-flip mutation with probability p,, = 0.3.
If the mutation violates cardinality constraints (||x]||; € [1,5]), the offspring is rejected. Combined
parent and offspring populations are sorted by non-domination rank and crowding distance; the top
N, solutions survive to the next generation.

Physician preferences over criteria {C;, C,, C3, C,} = {Efficacy, Safety, Interactions, Cost} are
modeled via pairwise preference ratios represented as triangular fuzzy numbers:

6;; = (6}, 0]},6% (24)

with confidence-dependent bounds:

0} = 671(1 —0.20),0% = 6]} (1 + 0.20) (25)

where ¢ € [0,1] quantifies preference certainty. The preference ordering Efficacy > Safety >
Interactions > Cost is encoded with modal values 613 = 1.3, 875 = 1.5, 65} = 2.0, and confidence
parameter o = 0.7. For DIBR Il weight computation, cumulative preference ratios are computed via
fuzzy multiplication [10, pp. 72-96]:

é13 = élz X é23' é14 = é13 X é34 (26)
Fuzzy weights are derived from the preference structure:
o ~ ~_ ~_ ~_ 111
Wy = [1 DL D65 D 9141] (27)
W] == Wj—l @ é(]—l)]ﬂ] = 2,3,4 (28)
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where (0 denotes fuzzy division. Graded mean defuzzification converts fuzzy weights to crisp values:

aj+dam+ay

GM(4) = +— (29)
Normalized crisp weights are obtained via [11]:
_ GMW))
Wi S, aMGw (30)
For each Pareto solution i, objectives are normalized via min—max scaling [12]:
- dg—d™™ . .
dij = —ma—mm if Cj is benefit criterion (31)
aj®*-dj
_ d;-nax—dij . . . .
dij = —ma—mm if Cj is cost criterion (32)
aj**-dj
where d;; is the value of the criterion j for solution i. The final aggregated score is:
Score; = Y1.1 w;d;; (33)

As aresult of DIBR Il weight ranking, solutions are ranked in descending order of Score;, with
the top-ranked prescription representing the optimal balance of all criteria under the specified physi-
cian preferences [13].

Experimental results. The proposed hybrid framework was evaluated on a synthetic clinical
dataset constructed to emulate realistic pharmacotherapy scenarios under full experimental control.
The dataset comprises 1,000 patients with clinically plausible distributions for age, BMI, GFR, AST,
and HbA1c, and 50 drugs defined by baseline efficacy, adverse event risk, cost, binary toxicity indi-
cators, and a symmetric drug—drug interaction matrix representing low to moderate interaction sever-
ity. Applying the Mamdani fuzzy safety filter with threshold 754f.¢, = 0.5 to all 50,000 patient-drug
pairs yielded 44,692 safety-eligible combinations, which were split 80/20 into 35,754 training and
8,938 test instances for ensemble modelling, with predictive performance summarized in Table 2.

A representative test patient with age 62.5 years, GFR 63.1 mL/min/1.73m?, and AST 10.0 U/L
was selected for detailed analysis. Fuzzy safety assessment indicated that all 50 drugs satisfied the
safety threshold for this patient, enabling exploration of the full drug space. NSGA-II was executed
with population size N,,, = 50 for G = 30 generations. The evolutionary process exhibited con-
sistent improvement in Pareto front quality, with the hypervolume indicator increasing from 0.412
(generation 1) to 0.584 (generation 30), indicating effective convergence and diversity maintenance.
The final population contained 20 non-dominated solutions in the raw Pareto front. Application of
duplicate removal based on binary prescription vector comparison reduced this to 9 unique Pareto-
optimal prescriptions, representing a 55% duplication rate typical of evolutionary algorithms on dis-
crete combinatorial problems.

Table 2
Predictive Performance of Ensemble Machine Learning Models
Model Task AUC-ROC Accuracy Precision Recall
Random Forest Efficacy 0.871 0.794 0.782 0.801
XGBoost Adverse Events 0.907 0.829 0.815 0.838
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In the figure given below, illustrates key trade-offs on the Pareto front between efficacy,
safety, and cost. High-efficacy prescriptions (efficacy > 0.80) show increased adverse event risk
(=0.35-0.42), whereas ultra-safe options (adverse events < 0.15) reach only moderate efficacy
(=0.45-0.50). High-efficacy regimens are also more expensive (=550-610 AZN), while lower-cost
alternatives (<250 AZN) do not systematically worsen safety, and all prescriptions keep drug—drug
interaction severity below 0.15, reflecting the moderate interaction matrix.

Parelo Fronl Anal;
A

- Trade-afls Belween Objeclives

*"“ - * v:ru’. e "‘,{_,

©

Pareto Front Analysis — Trade-offs Between Objectives

Drug count analysis shows that 4- and 5-drug regimens dominate the Pareto set (7 of 9 solu-
tions), indicating that multi-drug combinations provide better coverage of the objective space. Physi-
cian preferences were modeled via fuzzy triangular numbers with the ordering Efficacy > , Safety >,
Interactions > Cost, and confidence parameter ¢ = 0.7, yielding crisp weightsw, = 0.387,w, =
0.302, w3 = 0.205, w, = 0.105, which emphasize efficacy and safety while assigning lower
importance to cost. The top five Pareto-optimal prescriptions, together with their objective values
and qualitative clinical interpretations, are summarized in Table 3.

Table 3
Top Five Prescription Recommendations with Clinical Profiles

Rank | DIBR Score | Efficacy | Adverse Events | DDI | Cost (AZN) | Drugs Clinical Profile
1 0.599 84.4% 39.4% 11.6% 608.6 5 High-efficacy, aggressive
2 0.545 45.8% 12.9% 12.0% 241.2 4 Budget-constrained
3 0.525 82.6% 40.0% 12.6% 593.3 5 High-efficacy alternative
4 0.478 48.9% 7.7% 13.3% 499.2 5 Ultra-safe, elderly
5 0.417 45.9% 10.9% 13.8% 419.8 5 Balanced, general use

Quantitative analysis of the Pareto front confirms fundamental trade-offs in multi-criteria
drug selection. The efficacy—safety relationship shows a strong negative correlation (Spearman
p = —0.78,p < 0.01), where increasing mean efficacy from 45% to 85% leads to a 3.1-fold rise
in adverse event probability (from 12.9% to 40.0%). The efficacy—cost correlation is moderate
(p = 0.61,p = 0.03), with high-efficacy solutions (>80%) costing on average 2.4x more than
moderate-efficacy regimens (<50%), whereas safety and cost are only weakly correlated (p =
0.23, p = 0.18), indicating that budget limits do not inherently require higher adverse event
risk. Drug—drug interaction severity remains relatively uniform (coefficient of variation 18.3%),
suggesting that the interaction matrix design and cardinality constraints effectively restrict harmful
combinations across Pareto-optimal prescriptions.
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Conclusion and future works. This study presented a hybrid decision-support framework
for multi-criteria drug selection that jointly optimizes efficacy, safety, drug—drug interactions, and
cost at the individual patient level. The architecture combines a Mamdani fuzzy safety filter, en-
semble machine learning for outcome prediction, NSGA-II for multi-objective optimization, and
Fuzzy DIBR 1l for preference-based ranking, yielding interpretable Pareto-optimal prescriptions
instead of a single opaque recommendation. Experimental evaluation on a synthesized data but
clinically realistic dataset demonstrated that the framework can generate diverse treatment options
with clearly quantified trade-offs aligned with physician priorities. Future work will include vali-
dation on real-world electronic health record and prescription data to better capture rare adverse
events and complex interaction patterns, as well as the development of interactive tools for dynamic
physician preference elicitation. Further research directions involve integrating uncertainty-aware
or robust optimization techniques and extending the framework to high-risk, polypharmacy-inten-
sive domains such as oncology.
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