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Abstract. Personalized drug selection requires balancing therapeutic efficacy, adverse events, drug interactions, and 

cost–objectives that are inherently conflicting. This study proposes a hybrid architecture integrating Mamdani fuzzy infer-

ence, ensemble machine learning, NSGA-II optimization, and Fuzzy DIBR II ranking for multi-objective pharmacotherapy. 

The Mamdani system encodes eight clinical safety rules to filter unsuitable patient-drug pairs based on renal and hepatic 

function. Random Forest and XGBoost models trained on 44,692 pairs achieve AUC-ROC of 0.871 and 0.907 for efficacy 

and adverse event prediction, respectively. NSGA-II generates nine unique Pareto-optimal prescriptions over 30 generations. 

Fuzzy DIBR II elicits criterion weights from physician preferences modeled as triangular fuzzy numbers (𝜎 =  0.7), yield-

ing 𝑤₁ =  0.387 (efficacy), 𝑤₂ =  0.302 (safety), 𝑤₃ =  0.205 (interactions), 𝑤₄ =  0.105 (cost). The top-ranked pre-

scription achieves 84.4% efficacy, 39.4% adverse events, 11.6% interaction severity, and 608.60 AZN cost. Results demon-

strate clinically interpretable multi-criteria recommendations with explicit trade-off quantification. 
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Introduction. Clinical pharmacotherapy is a complex multi-criteria decision problem that re-

quires clinicians to simultaneously balance therapeutic efficacy, adverse event risk, drug–drug inter-

actions, and treatment cost while respecting patient-specific physiological constraints [1]. Existing 

drug selection practices rely mainly on clinical guidelines and physician experience, typically opti-

mizing one dominant criterion and handling the others implicitly or via ad hoc rules [2].  

Multi-objective optimization offers a principled way to generate sets of Pareto-optimal pre-

scriptions that represent distinct trade-off strategies instead of enforcing fixed preferences a priori. 

Evolutionary algorithms such as NSGA-II provide efficient search and diversity maintenance, but by 

themselves do not address two key clinical requirements: enforcing patient-specific safety constraints 

and translating Pareto sets into actionable recommendations aligned with uncertain clinician prefer-

ences. Fuzzy logic and fuzzy MCDM methods are well-suited to encode linguistic clinical knowledge 

and model uncertainty, while ensemble machine learning can provide robust data-driven predictions 

of efficacy and adverse events. 

This study proposes a hybrid five-stage decision-support architecture that integrates Mamdani 

fuzzy safety filtering, ensemble machine learning (Random Forest and XGBoost) for patient-specific 

outcome prediction, NSGA-II-based multi-objective optimization, and Fuzzy DIBR II for uncer-

tainty-aware preference modeling [3]. Personalized drug selection is formulated as a constrained four-

objective problem that maximizes efficacy and minimizes adverse events, drug–drug interaction se-

verity, and cost under fuzzy safety constraints [4]. Experimental evaluation on a synthesized data yet 

clinically realistic dataset with 1,000 patients and 50 drugs shows that the framework can generate 

diverse Pareto-optimal multi-drug prescriptions and rank them into clinically interpretable strategies, 

with the top solution achieving high predicted efficacy while maintaining acceptable safety and cost. 

Related works. Multi-objective evolutionary algorithms have been used in healthcare for prob-

lems such as radiotherapy planning, chemotherapy scheduling, and dose optimization, where trade-

offs between tumor control and toxicity are critical. These studies demonstrate the value of Pareto-

based optimization but typically treat continuous dosing variables, rely on deterministic objective 

functions, and do not incorporate patient-specific pharmacological safety constraints or discrete 

multi-drug selection. Fuzzy logic has a long history in medical diagnosis and risk assessment, ena-

bling robust handling of imprecise laboratory values and linguistic clinical rules [5]. Mamdani-type 

fuzzy systems and neuro-fuzzy models have achieved high diagnostic accuracy [6, pp. 177–179]. 

Several studies have shown that Random Forest, gradient boosting and graph-based models can ac-

curately predict drug response and adverse events from clinical and omics data. 
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Multi-criteria decision-making methods such as AHP, TOPSIS, PROMETHEE, and their fuzzy 

extensions have been applied to drug and health technology evaluation, showing how structured cri-

teria weighting can support formulary and reimbursement decisions [7]. However, these methods 

usually rely on precise or simple fuzzy weights and do not explicitly represent uncertainty in prefer-

ence ratios. The DIBR family introduces ratio-based weight elicitation with a stronger theoretical 

basis and recent fuzzy extensions, but has not yet been applied to pharmacotherapy to jointly capture 

uncertainty in fuzzy preference ratios.  

Mathematical modelling of multi-criteria drug selection. Let 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} denote the 

set of available drugs and 𝑝 a fixed patient. A prescription is represented by a binary decision vector 

𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇 ∈ {0,1}𝑛, where 𝑥𝑖 = 1 indicates that the drug 𝑑𝑖 is included in the regimen and 

𝑥𝑖 = 0 otherwise. The number of selected drugs is constrained by the cardinality condition  
 

1 ≤ ‖𝐱‖1 =∑  

𝑛

𝑖=1

𝑥𝑖 ≤ 5                                                                    (1) 

 

reflecting clinical practice in which only a limited number of concurrent medications is acceptable. 

For each patient-drug pair (𝑝, 𝑑𝑖) a fuzzy safety system produces a scalar safety score       

𝑆fuzzy(𝑝, 𝑑𝑖) ∈ [0,1]. This score combines age, renal and hepatic function, and drug-specific toxicity 

into a continuous measure of suitability. The following hard safety constraint is imposed, 

𝑆fuzzy(𝑝, 𝑑𝑖) ≥ 𝜏safety, ∀𝑖 such that 𝑥𝑖 = 1, where 𝜏safety = 0.5 is a clinically chosen threshold.  

Drugs violating this inequality are excluded from any admissible prescription. The quality of a 

prescription 𝐱 is assessed through four criteria: expected therapeutic efficacy, risk of adverse events, 

severity of drug-drug interactions, and total treatment cost. These are modeled as objective functions 

𝑓𝑗(𝐱), 𝑗 = 1,… ,4, to be minimized simultaneously.  

Machine learning models provide patient-specific probabilities 𝑃̂eff(𝑝, 𝑑𝑖) of achieving suf-

ficient clinical response and 𝑃̂se(𝑝, 𝑑𝑖) of experiencing a clinically relevant adverse event. Let 

ℐ(𝐱) = {𝑖: 𝑥𝑖 = 1} denote the index set of selected drugs. The first two objectives are defined as 
 

𝑓1(𝐱) = −
1

|ℐ(𝐱)|
∑  

𝑖∈ℐ(𝐱)

𝑃̂eff(𝑝, 𝑑𝑖),                                                             (2) 

 

 𝑓2(𝐱) =
1

|ℐ(𝐱)|
∑  

𝑖∈ℐ(𝐱)

𝑃̂se(𝑝, 𝑑𝑖),                                                             (3) 

 

so that minimizing 𝑓1 corresponds to maximizing mean efficacy, whereas minimizing 𝑓2 reduces 

the average probability of adverse events across all prescribed drugs. Potential pharmacological 

conflicts between drugs are modeled through a symmetric interaction matrix – drug-drug interaction 

- DDI ∈ [0,1]𝑛×𝑛, where DDI𝑖𝑗  quantifies the normalized severity of the interaction between drugs 

𝑑𝑖 and 𝑑𝑗. For any prescription containing at least two drugs, the interaction objective is 
 

𝑓3(𝐱) =
2

|ℐ(𝐱)|(|ℐ(𝐱)| − 1)
∑  

𝑖,𝑗∈ℐ(𝐱)

𝑖<𝑗

DDI𝑖𝑗 ,                                                  (4) 

 

representing the mean pairwise interaction severity; for single-drug prescriptions, 𝑓3(𝐱) is set to zero. 

Let 𝐶(𝑑𝑖) > 0 denote the monetary cost of the drug 𝑑𝑖 and 𝐶ref a reference value used for 

normalization (in the experiments, 𝐶ref = 200 AZN). The cost objective is given by 
 

𝑓4(𝐱) =
1

𝐶ref

∑  

𝑖∈ℐ(𝐱)

𝐶(𝑑𝑖),                                                                     (5) 
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which scales the total cost to a dimensionless quantity of order one, facilitating joint optimization 

with the other criteria. The multi-criteria drug selection problem for a patient 𝑝 can therefore be writ-

ten compactly as the constrained multi-objective program, 

 

min
𝐱∈{0,1}𝑛

 𝐅(𝒙) = [𝑓1(𝐱), 𝑓2(𝐱), 𝑓3(𝐱), 𝑓4(𝐱)]
𝑇                                           (6)  

 

1 ≤ ‖𝐱‖1 ≤ 5, 𝑆fuzzy(𝑝, 𝑑𝑖) ≥ 𝜏safety , ∀𝑖 ∈ ℐ(𝐱).                                           (7) 

 

A prescription 𝐱(1) is said to Pareto-dominate another prescription 𝐱(2) if 
 

𝑓𝑗(𝐱
(1)) ≤ 𝑓𝑗(𝐱

(2)), ∀𝑗 ∈ {1,2,3,4},                                                        (8) 

 

and the inequality is strict for at least one objective. The set of all non-dominated feasible prescrip-

tions constitutes the patient-specific Pareto set. Subsequent sections describe how this formal model 

is instantiated within a hybrid fuzzy-evolutionary decision-making framework that generates, evalu-

ates, and ranks Pareto-optimal multi-drug prescriptions. 

Hybrid fuzzy–evolutionary decision-making framework. The fuzzy safety module employs 

triangular membership functions defined as: 

 

𝑡𝑟𝑖(𝑥; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 
0, if 𝑥 < 𝑎;
𝑥−𝑎

𝑏−𝑎
, if 𝑎 ≤ 𝑥 ≤ 𝑏;

𝑐−𝑥

𝑐−𝑏
, if 𝑏 ≤ 𝑥 ≤ 𝑐;

0, if 𝑥 > 𝑐;

                                                  (9) 

 

where 𝑎 ≤ 𝑏 ≤ 𝑐 represent the lower bound, modal value, and upper bound, respectively. Three input 

linguistic variables are defined as 𝑥age ∈ [18,90] years for a lifetime, 𝑥GFR ∈ [15,120] 

mL/min/1.73m² for Glomerular Filtration Rate (GFR) and, 𝑥AST ∈ [10,150] U/L for Aspartate 

Aminotransferase (AST). Each variable uses three fuzzy sets with triangular membership functions 

in Table 1.  
 

Table 1 

Partitioning of variables into three fuzzy sets using triangular membership functions 
 

Lifetime GFR AST 

𝜇young(𝑥) = tri(𝑥; 18,18,40) 𝜇poor(𝑥) = tri(𝑥; 15,15,45) 𝜇normal(𝑥) = tri(𝑥; 10,10,40) 

𝜇middle(𝑥) = tri(𝑥; 30,55,70) 𝜇moderate(𝑥) = tri(𝑥; 35,60,85) 𝜇elevated(𝑥) = tri(𝑥; 30,60,90) 

𝜇elderly(𝑥) = tri(𝑥; 60,90,90) 𝜇normal(𝑥) = tri(𝑥; 75,120,120) 𝜇high(𝑥) = tri(𝑥; 80,150,150) 

 

The output variable, safety score 𝑠 ∈ [0,1], is partitioned into three fuzzy sets, 𝜇unsafe(𝑠) =
tri(𝑠; 0,0,0.4), 𝜇marginal(𝑠) = tri(𝑠; 0.3,0.5,0.7) and,  𝜇safe(𝑠) = tri(𝑠; 0.6,1.0,1.0). The knowledge 

base consists of eight IF-THEN rules encoding clinical safety constraints: 

1. R₁: IF age is young AND GFR is normal AND AST is normal THEN safety is safe 

2. R₂: IF age is elderly AND GFR is poor THEN safety is unsafe 

3. R₃: IF GFR is poor AND AST is high THEN safety is unsafe 

4. R₄: IF age is middle AND GFR is moderate AND AST is elevated THEN safety is marginal 

5. R₅: IF age is young AND GFR is poor THEN safety is marginal 

6. R₆: IF age is elderly AND GFR is normal AND AST is normal THEN safety is safe 

7. R₇: IF age is middle AND GFR is normal THEN safety is safe 

8. R₈: IF age is elderly AND AST is high THEN safety is unsafe 
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For the input tuple (𝑥age, 𝑥GFR, 𝑥AST), the firing strength 𝛼𝑘 of rule 𝑅𝑘 is computed using the 

minimum t-norm: 

𝛼𝑘 = min{𝜇𝐴𝑘1(𝑥age), 𝜇𝐴𝑘2(𝑥GFR), 𝜇𝐴𝑘3(𝑥AST)}                                             (10)  

 

where 𝐴𝑘𝑖 denotes the antecedent fuzzy set for the variable 𝑖 in rule 𝑘. The aggregated output mem-

bership function is obtained via maximum aggregation: 

 

𝜇agg(𝑠) = max
𝑘=1…8

 {min(𝛼𝑘, 𝜇𝐶𝑘(𝑠))}                                                   (11) 

 

where 𝐶𝑘 is the consequent fuzzy set of the rule 𝑘. Centroid defuzzification produces the crisp base 

safety score: 

𝑠base =
∫  
1
0  𝑠⋅𝜇agg(𝑠) 𝑑𝑠

∫  
1
0
 𝜇agg(𝑠) 𝑑𝑠

≈
∑  𝑁
𝑗=1  𝑠𝑗⋅𝜇agg(𝑠𝑗)

∑  𝑁
𝑗=1  𝜇agg(𝑠𝑗)

                                                   (12) 

 

where 𝑁 = 1000 discretization points are used for numerical integration. The base safety score is 

adjusted for drug-specific toxicity profiles: 

 

𝑆fuzzy(𝑝, 𝑑) = max{0, 𝑠base − Δ(𝑝, 𝑑)}                                             (13) 

where the penalty term is: 

 

Δ(𝑝, 𝑑) = 𝛽1𝑇nephro(𝑑) ⋅ 𝕀(𝑥GFR < 60) + 𝛽2𝑇hepato(𝑑) ⋅ 𝕀(𝑥AST > 60) + 𝛽3𝑇terato(𝑑) ⋅ 𝕀pregnant   (14)  

 

with penalty coefficients, 𝛽1 = 0.5, 𝛽2 = 0.6, 𝛽3 = 1.0 and 𝑇⋅(𝑑) ∈ {0,1} indicating drug toxicity 

characteristics. For each safety-eligible patient–drug pair (𝑝, 𝑑), a 10-dimensional feature vector is 

constructed: 

 

𝐳 = [age,BMI,GFR,AST,HbA1c,severity, 𝐸base(𝑑), 𝑅base(𝑑), 𝐶(𝑑),class(𝑑)]𝑇            (15) 

 

where patient features include age, body mass index (BMI), glomerular filtration rate (GFR), aspar-

tate aminotransferase (AST), glycated hemoglobin (HbA1c), and disease severity grade. Addition-

ally, drug features comprises on baseline efficacy 𝐸base(𝑑), baseline adverse event risk 𝑅base(𝑑), and 

cost 𝐶(𝑑). A Random Forest classifier with 𝑇 = 100 decision trees and maximum depth ℎmax = 20 

predicts the probability of high efficacy: 
 

𝑃̂eff(𝐳) =
1

𝑇
∑  𝑇
𝑡=1 ℎ𝑡(𝐳)                                                          (16) 

 

where ℎ𝑡: ℝ
10 → {0,1} is the 𝑡-th decision tree trained on a bootstrap sample via Gini impurity mini-

mization: 

Gini(𝑆) = 1 − ∑  𝑐=0,1 (
|𝑆𝑐|

|𝑆|
)
2

                                                       (17) 

 

for a node sample set 𝑆 with class subsets 𝑆0 and 𝑆1. An XGBoost classifier with 𝐾 = 100 boosting 

iterations, maximum depth 6, and learning rate 𝜂 = 0.1 models adverse event probability: 
 

𝑃̂se(𝐳) = 𝜎(∑  𝐾
𝑘=1  𝑓𝑘(𝐳))                                                         (18) 

 

where 𝜎(⋅) is the sigmoid function, and 𝑓𝑘 minimizes the regularized objective: 

 

ℒ (𝑘) = ∑  
𝑛train

𝑖=1 ℓ(𝑦𝑖, 𝑦̂𝑖
(𝑘−1)

+ 𝑓𝑘(𝐳𝑖)) + 𝛾𝑇leaves +
𝜆

2
∑  
𝑇leaves

𝑗=1 𝑤𝑗
2                       (19) 
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with logistic loss: 

ℓ(𝑦, 𝑦̂) = −𝑦log (𝜎(𝑦̂)) − (1 − 𝑦)log (1 − 𝜎(𝑦̂))                               (20) 
 

complexity penalty 𝛾, and 𝐿2 regularization parameter 𝜆. For two candidate solutions 𝐱(1) and 𝐱(2), 
solution 𝐱(1) Pareto-dominates 𝐱(2) (denoted 𝐱(1) ≺ 𝐱(2)) if and only if: 
 

𝑓𝑗(𝐱
(1)) ≤ 𝑓𝑗(𝐱

(2)) for all 𝑗 ∈ {1,2,3,4}                                            (21) 
 

∃𝑘 ∈ {1,2,3,4}: 𝑓𝑘(𝐱
(1)) < 𝑓𝑘(𝐱

(2))                                                     (22) 
 

Let ℱ𝑟 denote the set (front) of solutions that share the same non-domination rank 𝑟, where rank 

is computed with respect to all objective values {𝑓1(𝐱), 𝑓2(𝐱), 𝑓3(𝐱), 𝑓4(𝐱)} in the current population. 

The first front ℱ1 thus contains all non-dominated solutions, i.e., all 𝐱 for which there exists no other 

solution 𝐲 such that 𝐲 ≺ 𝐱. Non dominated sorting iteratively identifies ℱ1, ℱ2  ⋯ by counting, for 

each solution, how many other solutions dominate it and grouping solutions with the same rank into 

the corresponding front ℱ𝑟. For solution 𝑖 in front ℱ, the crowding distance 𝐶𝐷𝑖 quantifies how iso-

lated this solution is from its neighbors in objective space: 
 

𝐶𝐷𝑖 = ∑  4
𝑗=1

𝑓𝑗(𝑖+1)−𝑓𝑗(𝑖−1)

𝑓𝑗
max−𝑓𝑗

min                                                     (23) 

 

where, within front ℱ, solutions are sorted by objective 𝑗, 𝑓𝑗(𝑖 + 1) and 𝑓𝑗(𝑖 −  1) denote the objec-

tive values of the immediate neighbors of solution 𝑖 along dimension 𝑗, and boundary solutions in ℱ 

receive 𝐶𝐷𝑖 = ∞ to ensure their preservation. For this, NSGA-II operates with a population size 

𝑁pop = 50 and evolves over 𝐺 = 30 generations [8]. Each individual is represented as a binary vector 

of length equal to the number of safety-eligible drugs for the patient. Each individual is initialized by 

randomly selecting 1–5 drugs from the safety-eligible set. Binary tournament selection based on non-

domination rank and crowding distance [9, pp. 45–52]. Bit-flip mutation with probability 𝑝𝑚 = 0.3. 

If the mutation violates cardinality constraints (‖𝐱‖1 ∉ [1,5]), the offspring is rejected. Combined 

parent and offspring populations are sorted by non-domination rank and crowding distance; the top 

𝑁pop solutions survive to the next generation. 

Physician preferences over criteria {𝐶1, 𝐶2, 𝐶3, 𝐶4} = {Efficacy, Safety, Interactions, Cost} are 

modeled via pairwise preference ratios represented as triangular fuzzy numbers: 
 

𝜃̃𝑖𝑗 = (𝜃𝑖𝑗
𝑙 , 𝜃𝑖𝑗

𝑚, 𝜃𝑖𝑗
𝑢)                                                              (24) 

with confidence-dependent bounds: 
 

𝜃𝑖𝑗
𝑙 = 𝜃𝑖𝑗

𝑚(1 − 0.2𝜎), 𝜃𝑖𝑗
𝑢 = 𝜃𝑖𝑗

𝑚(1 + 0.2𝜎)                                          (25) 
 

where 𝜎 ∈ [0,1] quantifies preference certainty. The preference ordering Efficacy ≻ Safety ≻
Interactions ≻ Cost is encoded with modal values 𝜃12

𝑚 = 1.3, 𝜃23
𝑚 = 1.5, 𝜃34

𝑚 = 2.0, and confidence 

parameter 𝜎 = 0.7. For DIBR II weight computation, cumulative preference ratios are computed via 

fuzzy multiplication [10, pp. 72–96]: 
 

𝜃̃13 = 𝜃̃12⊗ 𝜃̃23, 𝜃̃14 = 𝜃̃13⊗ 𝜃̃34                                                  (26) 
 

Fuzzy weights are derived from the preference structure: 
 

𝑤̃1 = [1̃ ⊕ 𝜃̃12
−1⊕ 𝜃̃13

−1⊕ 𝜃̃14
−1]

−1
                                                 (27) 

 

𝑤̃𝑗 = 𝑤̃𝑗−1⊘ 𝜃̃(𝑗−1)𝑗 , 𝑗 = 2,3,4                                                    (28) 
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where ⊘ denotes fuzzy division. Graded mean defuzzification converts fuzzy weights to crisp values: 

 

GM(𝐴̃) =
𝑎𝑙+4𝑎𝑚+𝑎𝑢

6
                                                              (29) 

 

Normalized crisp weights are obtained via [11]: 

 

𝑤𝑗 =
GM(𝑤̃𝑗)

∑  4
𝑘=1  GM(𝑤̃𝑘)

                                                                 (30) 

 

For each Pareto solution 𝑖, objectives are normalized via min–max scaling [12]: 

 

𝑑‾𝑖𝑗 =
𝑑𝑖𝑗−𝑑𝑗

min

𝑑𝑗
max−𝑑𝑗

min  if 𝐶𝑗 is benefit criterion                                        (31) 

 

𝑑‾𝑖𝑗 =
𝑑𝑗
max−𝑑𝑖𝑗

𝑑𝑗
max−𝑑𝑗

min  if 𝐶𝑗 is cost criterion                                           (32) 

 

where 𝑑𝑖𝑗 is the value of the criterion 𝑗 for solution 𝑖. The final aggregated score is: 

 

Score𝑖 = ∑  4
𝑗=1 𝑤𝑗𝑑‾𝑖𝑗                                                               (33) 

 

As a result of DIBR II weight ranking, solutions are ranked in descending order of Score𝑖, with 

the top-ranked prescription representing the optimal balance of all criteria under the specified physi-

cian preferences [13]. 

Experimental results. The proposed hybrid framework was evaluated on a synthetic clinical 

dataset constructed to emulate realistic pharmacotherapy scenarios under full experimental control. 

The dataset comprises 1,000 patients with clinically plausible distributions for age, BMI, GFR, AST, 

and HbA1c, and 50 drugs defined by baseline efficacy, adverse event risk, cost, binary toxicity indi-

cators, and a symmetric drug–drug interaction matrix representing low to moderate interaction sever-

ity. Applying the Mamdani fuzzy safety filter with threshold 𝜏𝑠𝑎𝑓𝑒𝑡𝑦 =  0.5 to all 50,000 patient–drug 

pairs yielded 44,692 safety-eligible combinations, which were split 80/20 into 35,754 training and 

8,938 test instances for ensemble modelling, with predictive performance summarized in Table 2. 

A representative test patient with age 62.5 years, GFR 63.1 mL/min/1.73m², and AST 10.0 U/L 

was selected for detailed analysis. Fuzzy safety assessment indicated that all 50 drugs satisfied the 

safety threshold for this patient, enabling exploration of the full drug space. NSGA-II was executed 

with population size 𝑁𝑝𝑜𝑝 = 50 for 𝐺 =  30 generations. The evolutionary process exhibited con-

sistent improvement in Pareto front quality, with the hypervolume indicator increasing from 0.412 

(generation 1) to 0.584 (generation 30), indicating effective convergence and diversity maintenance. 

The final population contained 20 non-dominated solutions in the raw Pareto front. Application of 

duplicate removal based on binary prescription vector comparison reduced this to 9 unique Pareto-

optimal prescriptions, representing a 55% duplication rate typical of evolutionary algorithms on dis-

crete combinatorial problems. 

   
Table 2 

Predictive Performance of Ensemble Machine Learning Models 

 

Model Task AUC-ROC Accuracy Precision Recall 

Random Forest Efficacy 0.871 0.794 0.782 0.801 

XGBoost Adverse Events 0.907 0.829 0.815 0.838 
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In the figure given below, illustrates key trade-offs on the Pareto front between efficacy, 

safety, and cost. High-efficacy prescriptions (efficacy > 0.80) show increased adverse event risk 

(≈0.35–0.42), whereas ultra-safe options (adverse events < 0.15) reach only moderate efficacy 

(≈0.45–0.50). High-efficacy regimens are also more expensive (≈550–610 AZN), while lower-cost 

alternatives (<250 AZN) do not systematically worsen safety, and all prescriptions keep drug–drug 

interaction severity below 0.15, reflecting the moderate interaction matrix. 

 

 
 

Pareto Front Analysis – Trade-offs Between Objectives 

 

Drug count analysis shows that 4‑ and 5‑drug regimens dominate the Pareto set (7 of 9 solu-

tions), indicating that multi-drug combinations provide better coverage of the objective space. Physi-

cian preferences were modeled via fuzzy triangular numbers with the ordering Efficacy ≻ , Safety ≻ , 

Interactions ≻ Cost, and confidence parameter 𝜎 =  0.7, yielding crisp weights 𝑤₁ =  0.387, 𝑤₂ =
 0.302, 𝑤₃ =  0.205, 𝑤₄ =  0.105, which emphasize efficacy and safety while assigning lower 

importance to cost. The top five Pareto-optimal prescriptions, together with their objective values 

and qualitative clinical interpretations, are summarized in Table 3. 

 
Table 3 

Top Five Prescription Recommendations with Clinical Profiles 

 

Rank DIBR Score Efficacy Adverse Events DDI Cost (AZN) Drugs Clinical Profile 

1 0.599 84.4% 39.4% 11.6% 608.6 5 High-efficacy, aggressive 

2 0.545 45.8% 12.9% 12.0% 241.2 4 Budget-constrained 

3 0.525 82.6% 40.0% 12.6% 593.3 5 High-efficacy alternative 

4 0.478 48.9% 7.7% 13.3% 499.2 5 Ultra-safe, elderly 

5 0.417 45.9% 10.9% 13.8% 419.8 5 Balanced, general use 

 

Quantitative analysis of the Pareto front confirms fundamental trade-offs in multi-criteria 

drug selection. The efficacy–safety relationship shows a strong negative correlation (Spearman 

𝜌 =  −0.78, 𝑝 <  0.01), where increasing mean efficacy from 45% to 85% leads to a 3.1-fold rise 

in adverse event probability (from 12.9% to 40.0%). The efficacy–cost correlation is moderate 

(𝜌 =  0.61, 𝑝 =  0.03), with high‑efficacy solutions (>80%) costing on average 2.4× more than 

moderate‑efficacy regimens (<50%), whereas safety and cost are only weakly correlated (𝜌 =
 0.23, 𝑝 =  0.18), indicating that budget limits do not inherently require higher adverse event 

risk. Drug–drug interaction severity remains relatively uniform (coefficient of variation 18.3%), 

suggesting that the interaction matrix design and cardinality constraints effectively restrict harmful 

combinations across Pareto-optimal prescriptions. 
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Conclusion and future works. This study presented a hybrid decision-support framework 

for multi-criteria drug selection that jointly optimizes efficacy, safety, drug–drug interactions, and 

cost at the individual patient level. The architecture combines a Mamdani fuzzy safety filter, en-

semble machine learning for outcome prediction, NSGA-II for multi-objective optimization, and 

Fuzzy DIBR II for preference-based ranking, yielding interpretable Pareto-optimal prescriptions 

instead of a single opaque recommendation. Experimental evaluation on a synthesized data but 

clinically realistic dataset demonstrated that the framework can generate diverse treatment options 

with clearly quantified trade-offs aligned with physician priorities. Future work will include vali-

dation on real-world electronic health record and prescription data to better capture rare adverse 

events and complex interaction patterns, as well as the development of interactive tools for dynamic 

physician preference elicitation. Further research directions involve integrating uncertainty-aware 

or robust optimization techniques and extending the framework to high-risk, polypharmacy-inten-

sive domains such as oncology. 
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